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Abstract—This paper analyzes how social structure and

social reinforcement affect the diffusion of an idea in

a population of human agents. A percolation approach

is used to model the diffusion process. This framework

assumes that information is local and embedded in a social

network. We introduce social reinforcement in the model

by softening the condition to adopt when the number of

adopting neighbors increases. Our numerical analysis shows

that social reinforcement severely affects the output of the

process. Some ideas with an original value so low that it

would never get diffused can be spread due to the strength

of social reinforcement. This effect also interacts with the

structure of the network, with a more sizeable impact on

small worlds with a low rewiring probability. Also, social

reinforcement completely changes the effect of clustering

links, because sequential adoption of neighbors can make

one agent adopt at later stages.

I. INTRODUCTION

The success or failure of an idea depends not only on

the goodness of the idea but also on the diffusion process.

There are many examples in history of ideas that were

dismissed at first and much later proven right. As many

ideas spread through social contact, the social structure

of individuals is likely to be determinant in the diffusion

process. The present paper performs a theoretical study

of the influence of social reinforcement on the diffusion

of ideas in a population of human agents.

There is an ongoing debate in recent literature as to

which social network structure is optimal in terms of

diffusion [1]. The first strand of literature builds upon [2]

“weak ties hypothesis”. According to this idea, long ties

between otherwise unconnected neighborhoods facilitate

the spread of information, as they reduce the redundancy

of the diffusion process [3].

The second strand of literature builds on the work by

[4] and argues that close social structures promote trust,

and thus facilitates information sharing and transmission.

Thus, networks with overlapping neighborhoods (highly

clustered networks) are better suited to promote diffusion

[5].

The empirical evidence to support both theories is wide

and strong. In recent works, Damon Centola has argued



that none of them can be generalized to “whatever is

diffused”, but depends on whether the process is a simple

or a complex contagion process [6], [7], [8], [9]. In simple

contagions, only the first contact with an infected agent

determines whether or not an agent is infected. In such a

case, information in closed neighborhoods is redundant,

and long ties can bridge distant neighborhoods and allow

for information to travel through the network. In complex

contagions, on the other hand, transmission depends on

interactions with multiple infected agents. Thus, clustered

neighborhoods are not redundant anymore, but provide

with multiple sources of reinforcement that can promote

transmission. Accordingly, they finds that complex con-

tagion processes diffuse better in clustered networks like

small-worlds [10] or lattices than in random networks

[11].

In this paper we will argue that it is not only the

nature of the diffusion process but the distribution of

“incredulity” or resistance to contagion of agents, that de-

termines the performance of different network structures.

In order to do so, we build upon a percolation framework

to study the interplay of individual preferences and social

reinforcement, in order to have a theoretical benchmark

that can help understanding the role of structural factors

such as clustering in diffusion processes. We consider that

ideas are diffused by word-of-mouth [12] by friends in

a complex way. We find that for uniform distributions

of incredulity, the strength of weak ties hypothesis can

still apply for complex contagion processes. On the

other hand, for incredulous populations the reinforcement

mechanism is more important and clustered networks do

better than random ones.

The structure of the paper is as follows. Section II

introduces the basic model and the extension with social

reinforcement. In Section III we introduce a different

distribution of agents. Finally, in Section IV we present

some conclusions.

II. BASIC PERCOLATION MODEL AND SOCIAL

REINFORCEMENT EXTENSION

A. Basic percolation

In this article we study the diffusion process of new

ideas on a population that presents a social network struc-

ture. Ideas are identified by their value, represented by a

number v ∈ [0, 1]. Agents are heterogeneous and they are

characterized by a minimum quality requirement (MQR)

for adopting a new idea. The higher the MQR -the more

“incredulous” an agent is- the higher the value he requires

of an idea in order to adopt it. The MQR of agents

is a random variable which is uniformly distributed,

q ∼ U [0, 1]. This modelling framework corresponds to

the so-called percolation model [13].

In a percolation model of diffusion one agent adopts

the new idea at any given time t (time is discrete) if the

following three conditions are met:

• the agent has not adopted before t,

• the agent is informed, which only occurs if at least

one neighbor has adopted at time t− 1,

• the value of the idea is higher than the MQR of the

agent, that is q < v.

Without a social structure the percolation model behaves

as a well-mixed population of consumers. In a well-mixed

population, agents are not embedded in a social network

and they have perfect information. As soon as the idea

enters the “market”, the willing to adopt agents adopt it

while the rest don’t. As the MQR is uniformly distributed

q ∼ U [0, 1], a proportion 100 × v0% of the population

will adopt an idea of value v0 ∈ [0, 1]. This case can

be represented in our model with a complete network,

where every agent is connected to every other agent. In

a complete network, a single early adopter will inform

the whole population of agents about the existence of the

idea.



B. Network structure

In a percolation setting, agents become informed of

the existence of the idea through her neighbors. Thus,

the structure of the social network where the agents are

embedded can be determinant of the outcome of the

process [6]. Previous studies have considered percolation

processes in regular networks as a two dimensional lattice

[14], [15], [16] or a completely random network [12] .

These networks do not offer an accurate description of

a social network [17], although their simplicity can be

useful for their implementation and the interpretation of

the results.

In this paper we propose the use of the small world

algorithm [10] for the modelling of the social structure

as in [18]. This provides with a family of networks,

an interpolation between regular lattices and completely

random networks. The algorithm starts with a regular

ring lattice and rewires every link with probability µ.

This parameter allows to fine tune the randomness of the

network.

The small world algorithm produces a network struc-

ture that reproduces two well-known properties of social

networks. On the one hand, they have a high clustering

coefficient. That is to say, that the probability of two

nodes to be connected together is higher if they share a

mutual neighbor. This is a typical characteristic of social

networks, where friendship groups are tight communities,

and friends share many connections. On the other hand,

small worlds have a low average path length. This is the

so-called “six degrees of separation” theory introduced

by [19], according to which every person in the world is

separated from every other person by a very small number

of connections such as friendship.

Varying the rewiring probability µ of the small world

algorithm produces networks with varying average path

length and clustering coefficient (Figure 1). The case

Fig. 1: Clustering coefficient C(p) and average path-

length L(p) as a function of the rewiring probability in

small world networks [10].

with µ = 0 is the one-dimensional regular lattice, and

the case with µ = 1 is the random network, also

known as Poisson network or Erdos-Renyi model. The

“typical” Small World is the one with rewiring probability

µ = 0.01, presenting an average path-length almost as

low as the Poisson network, while still having a clustering

coefficient which is comparable with the one-dimensional

regular lattice.

C. Social reinforcement

The difference between the basic percolation model

and the social reinforcement extension lies in how the

MQR of agents is calculated. Let qt be the MQR of

an agent at time t. In the basic percolation model this

threshold remains constant over time, with qt = q0 ∀t.

Thus, the number of adopting neighbors does not play

any role in adoption decisions. Nothing changes for an

agent if she knows about the new idea from one or many

neighbors: the number of adopting neighbors does not

have any weight, and additional adoptions are only redun-

dant information. We extend this model by introducing a

local social reinforcement effect. We include a new factor

in the expression of the value of an idea, according to

which decisions are influenced by the number of adopting

neighbors. Adopting neighbors can “advocate” in favor of

the idea, so as to increase the likelihood of its adoption.

The updated MQR is defined to satisfy the following



hypothesis of the model. Let q ∈ [0, 1] be the MQR of

an agent, a ∈ N the number of adopting neighbors and

γ ∈ [0, 1] a parameter expressing the social reinforcement

intensity. The functional form f(q, a, γ) is chosen such

that:

1) it is decreasing in the absolute number of adopting

neighbors, ∂f∂a < 0;

2) it is decreasing in social reinforcement, ∂f∂γ < 0;

3) with only one neighbor adopting it is equal to the

initial MQR q0;

4) without social reinforcement (γ = 0) it is equal to

the basic percolation model.

The first condition implies that neighbors give positive

information about the idea: the more neighbors adopt, the

easier it is for an agent to adopt. The second condition

means that social reinforcement is a positive force for

adoption. With the same number of adopting neighbors,

the updated value of MQR will be lower for higher

social reinforcement intensities, so adoption will be easier.

The first decision to adopt for an agent is after the first

adoption in her neighborhood. In order to compare our

results with the benchmark percolation case, we need the

MQR of agents to be their initial value with only one

neighbor adopting (third condition). Finally, the fourth

condition allows us to keep the benchmark percolation as

a particular case of the extended model. The functional

form in Equation (1) fulfills all four conditions.

qit = qi0 ·
( 1

# neighbors of i that have adopted

)γ
= qi0 ·

( 1

ait

)γ
(1)

D. Simulation results

In this section we study the percolation model extended

with social reinforcement by mean of batch simulation

experiments. For the social network structure, different

instances of the small world model [10] are considered,

which are identified by a rewiring probability µ ∈

{0, 0.001, 0.01, 0.1, 1}. We consider N = 10, 000 nodes

representing potential adopters, with k = 4 neighbors on

average. We simulate the model in different settings rep-

resented by the rewiring probability µ (network structure),

the idea initial value v0, and the social reinforcement

intensity γ. The MQRs of agents are random draws from

a uniform distribution, q ∼ U [0, 1]. For each setting we

run R = 50 simulations, and look at the average value

of the diffusion size together with its standard deviation

across the different runs. In all simulations the diffusion

process is initialized with 10 early adopters, the seeds of

the simulation.

Results of the simulations are reported in Figure 2.

Without social reinforcement (γ = 0), the social structure

creates “information failures” compared to the well-mixed

population with perfect information. Some willing to

adopt agents never become informed of the existence of

the idea because none of their neighbors have adopted

it. Thus, the final diffusion size is lower than the linear

demand (dashed line).

We first observe that in the diffusion regime of per-

colation (above the threshold represented by the sharp

increase in diffusion size), the social reinforcement factor

adds to the diffusion levels of the basic percolation model.

Moreover, the number of adopters can even surpass the

linear diffusion level of a well-mixed population. This is

because with social reinforcement agents get to have a

subjective valuation of the idea which is above its initial

value v0, and possibly above their minimum required

quality even if the initial value was below it.

A second but possibly more important change is for

the position of the percolation threshold. For the Poisson

network (µ = 1), an increasing social reinforcement in-

tensity does very little, since the position of the threshold

is almost unaffected across the different panels in Figure



Fig. 2: Diffusion size in different small world networks for different initial values v0 ∈ [0, 1] of the diffusing idea

(horizontal axis) in different conditions of social reinforcement intensity γ ∈ [0, 1] (different panels). Reported values

are averages over 50 simulation runs. The network size is N = 10, 000 nodes, with 10 early adopters (seeds).



2. The opposite is true for the regular one-dimensional

lattice and for Small World networks with µ = 0.001 and

µ = 0.01, that see their thresholds moving substantially

to lower values as γ increases. For instance, the typical

Small World network with µ = 0.01 has a threshold equal

to 0.2 without social reinforcement,1 which goes down to

about 0.7 with γ = 0.4 and to 0.6 with γ = 1.

The thresholds to percolation do not just decrease,

they also seem to change their nature. Without social

reinforcement (Figure 2) the threshold from non-diffusion

to diffusion regimes is a second order transition: there is

a sharp but continuous change in the number of adopters.

With social reinforcement (Figure 2), on the other hand,

the threshold looks more like a first order transition: the

number of adopters jumps from almost zero to almost

full diffusion. This can be the result of a critical mass

scenario. As soon as there is a sufficient number of

adopters, the social reinforcement forces the process to

cascade to complete diffusion. This effect only happens

in highly clustered networks (µ = 0.01 or lower). Without

social reinforcement clustering hampers diffusion, since

most links are redundant and cannot be used to reach

new sources of information. With social reinforcement,

though, another effect arises: shared friends may lead

an agent to adoption by increasing her subjective value

of an idea. Assume for instance that at a time t agent

i, Margaret, sees Bill, one of her neighbors, adopting

the idea. Still, the initial value of the idea is below

Margaret’s minimum required level, v0 < qir. At time t+1

another of her neighbors, Elinor, or agent j, adopts. This

happens exactly because their common friend Bill had

adopted the period before. Elinor had a lower minimum

requirement level than Margaret, which happens to be

such that vjr < vt+1 < vir. Now, with two neighbors

adopting, the value of the idea for Margaret becomes

1The theoretical value is about 0.82, according to [20].

high enough as to be above her minimum requirement,

vt+2 > vir. This is how the triadic structure of their

mutual friendship makes it possible for Margaret to adopt

at a later stage, which would have not happened in a

different social structure. Figure 3 shows an example of

this dynamic.

Finally, Figure 2 shows that increasing social reinforce-

ment intensity reduces the differences between network

structure. While without social reinforcement (γ = 0)

there are differences in the final size of diffusion for

v0 ∈ [0.3, 1] approximately, with a high social reinforce-

ment (γ = 1) this range is reduced to v0 ∈ [0.3, 0.5].

This result has important implications for policies aiming

at introducing some new behavior or idea: when agents

can be convinced by their friends, it is not so important

to know the social network structure. In a well-mixed

population, perfect information implies that every agent

instantly knows about any new idea. In a network setting,

this situation is represented by a fully connected network,

where every agent is neighbor of every other agent. In

this case, social reinforcement would lead to full diffusion

even for small values of the idea.2 Thus, it is important to

know that there is some kind of network structure in the

process. It is not so important, however, which structure

this is as long as it is not a perfect information setting.

III. NON-UNIFORM DISTRIBUTIONS

Most studies on complex propagation consider that

agents are homogeneous in their resistance to contagion

[6], [11]. In the previous section, we relax this assumption

by assuming a uniform distribution of MQRs. Nonethe-

2If an idea of value vo is introduced, a proportion vo of the N

agents would immediately adopt it, that is a total of N ·vo agents. In the

following step, the MQR of the remaining agents has been decreased by
1

Nvo

γ : at the end of the second step, vo(voN)γ agents have adopted.

The process continues so that after the s step, v1+sγo Nsγ agents have

adopted. If N > frac1vo, then lims(v
1+sγ
o Nsγ = inf , so the process

reaches full diffusion.



(a) The white nodes represent the will-

ing to adopt neighbors.

(b) A willing to adopt agent adopts (red

node).

(c) The clustering links make social

reinforcement more intense for non-

willing to adopt agents.

Fig. 3: The effect of social reinforcement on clustered neighborhoods

less, the outcome of the diffusion process is highly

dependent on the specific distribution considered.

The marginal effect on the MQR of an having an

additional neighbor adopting is described in Equation

(??). The first adopting friends induce a large decrease

in the MQR, while after a large number of friends have

adopted the influence of an additional adopting neighbor

is negligible. Moreover, the effect on one more friend

adopting is larger for large values of qio. Thus, in this

section we will concentrate on a case where agent have

high initial MQRs.

qit = qi0(1/ait)
γ → ∆qit

= qi0∆(ait)
−γ

= qi0(−γ(ait)
−gamma−1∆(ait)

= − qi0γ

(ait)
γ+1

∆ait (2)

As the effect of social reinforcement is higher upon

more reluctant or incredulous agents, we analyze here the

diffusion process in an incredulous population. Figure 4

shows the density of a Beta(α = 4, β = 1) distribution.

All values drawn from this distribution will be bounded to

[0, 1] as in the uniform distribution U [0, 1], although they

will be biased towards high values close to one. That way,

a distribution Beta(4, 1) represents a population where

most people are incredulous, or unwilling to adopt the

idea, and a few people are enthusiastic early adopters.

This is a realistic population that would provide an s-

shaped adoption curve over time [21].

A. Simulation results

As in the previous section, we use batch simulations

to compare the behavior of the diffusion process under

different conditions. We compare five network structures

from the samll world algorithm [10] with rewiring prob-

abilities µ ∈ {0, 0.001, 0.01, 0.1, 1}, N = 10, 000 nodes

and k = 4 initial neighbors. The MQRs of agents are

now drawn from a q ∼ Beta(4, 1) distribution. For every

setting of value of the idea vo ∈ [0, 1], social pressure

γ ∈ [0, 1] and rewiring probability µ we study the mean

diffusion size over R = 50 runs with 10 seeds or initial

adopters.

Results of the simulations are depicted in Figure 5.

Increasing the social reinforcement intensity γ increases

the number of adopters, as some of the unwilling to

adopt are convinced. It also decreases the percolation

thresholds, the minimum value of the idea vo that gets



(a) Density function (b) Cummulative distribution

Fig. 4: Probability distributions of a Beta(4, 1).

some diffusion. This effect is more accused for the more

regular networks, due to the reinforcement of clustering

links. In the random networks, however, the thresholds are

more stable. Thus, as the social reinforcement intensity γ

increases, the graphics for the different networks overlap

as in Figure 5, for γ = 0.4. If we continue to increase

γ, the clustered networks will overperform the random

Poisson network.

IV. CONCLUSIONS

Introducing social reinforcement in a percolation model

of diffusion adds to the size of diffusion. In the case

of ideas that would otherwise not be diffused, social

reinforcement allows for some spreading in the popu-

lation. It also reduces the differences between network

structures. Without social reinforcement, clustering links

are redundant: if the number of ties is limited, they restrict

the access to new sources of information. Nonetheless,

when the opinion of neighbors can influence the adoption

process, clustering links can force agents to cascade to

adoption.

In simple propagations no social reinforcement is

present (γ = 0) and thus the size of diffusion is

determined by the number of willing to adopt agents

that the idea can reach. That is to say, the diffusion is

determined by the dimensionality of the network, how

many agents can be reached with every new step. As

random networks have the higher dimensionality, they

are the most efficient structures to spread an idea. In the

small world algorithm, clusters come at the expenses of

bridges: the more clustered the network is, the lower its

dimensionality as clustering links are redundant.

For complex propagations clustering links are not re-

dundant anymore. Indeed, they provide an additional sup-

port for the social reinforcement mechanism. Once a first

neighbor has adopted, the probability that a second neigh-

bor adopts increases with clustering coefficient. In the

limit case, a random network, the probabilities of different

neighbors adopting are independent. Thus, introducing

social reinforcement affects the diffusion in the random

network vaguely. It increases the number of adopters, as

some of the unwilling to adopt are convinced, but leaves

the percolation thresholds essentially unmoved. On the

other hand, the interaction of social reinforcement with

the structure of highly clustered networks alters both the

number of adopters and the thresholds of the shift from

a non-diffusion to a diffusion regime. Moreover, there

appears to be a change in the nature of these thresholds,

from a second order transition to a first order (discon-

tinuous) transition. The interplay of clustered networks



Fig. 5: Diffusion size in different small world networks for different initial values v0 ∈ [0, 1] of the diffusing idea

(horizontal axis) in different conditions of social reinforcement intensity γ ∈ [0, 1] (different panels). Reported values

are averages over 50 simulation runs. The network size is N = 10, 000 nodes, with 10 early adopters (seeds). The

initial MQR values in the population follows a Beta(4, 1) distribution.



decreasing their thresholds while random ones remain

more stable results in an homogenization of the results

for the different networks. For high intensities of social

reinforcement, it is important to know that there is a social

network underlying the process of diffusion, but not so

important to know which network it is. Nonetheless, even

with this uniformization of the network structures random

networks still come as the most efficient structures to

enhance diffusion.

In this setting, random networks get higher shares of

diffusion both for simple and complex propagations, con-

trary to the findings of [6], [9], [8]. Nonetheless, changing

the distribution of “incredulity” throughout the population

of agents can confirm their results. Our study confirms

that clustering can be favorable or harmful for diffusion,

depending on the setting. Nonetheless, the determinant of

which network structure is more efficient for spread is not

only the nature of the process (a complex or a simplex

propagation), but also the characteristics of the population

in which it diffuses.
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