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Abstract 

Scientists display heterogeneous profiles regarding the focus of their knowledge production 

activities, their collaboration strategies and their outcomes. Despite increasing interests on 

research collaboration, little is known about how scientists mobilize their research network. In 

their knowledge creation efforts, scientists collaborate with colleagues from both academia and 

industry. These collaborations, leading or not to co-authorship, allow scientists to access to a 

number of research resources. The objective of this study is to explore whether and how 

knowledge production across the four Stokes’ quadrants (different focus on fundamental 

understandings and on immediate industrial and social application) is associated with specific 

modes of mobilizing research resources. This study examines empirically the relationship 

between scientific knowledge production, research resources and collaboration networks, using 

bibliometric and survey data on 116 scientists active in biotechnology in the Netherlands. Our 

results suggest that different knowledge creation objectives and outcomes are associated with 

particular ways of activating the network, and mobilize it to access specific research resources. 
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Exploring resource seeking in a scientific collaboration network 

and its effect on scientists' knowledge creation 

 

 

1. Introduction  

By collaborating, scientists pool a variety of resources essential to the creation of new 

knowledge. Enabling a labour division of research activities (Foray & Steinmueller, 2003), 

“there is something to gain, whether material, intellectual or social” (Melin, 2000, p. 38) from 

working with scientific colleagues, both academic and industrial (Ankrah & AL-Tabbaa, 2015; 

Balconi et al., 2004; D’Este et al., 2019; D’Este & Patel, 2007; Haeussler, 2011). Thus, a 

scientist's productivity may be determined by how they mobilize their relationships (Gonzalez-

Brambila et al., 2013; Li et al., 2013; Rotolo & Messeni Petruzzelli, 2013). A recent 

contribution focusing on scientists involved in simultaneous discoveries argue that the 

significant higher number of follow up publications of scientists collaborating with industrial 

colleagues compared to scientists collaborating with academic colleagues only reflect their 

possibility for focusing only on fundamental understanding rather than also on 

commercialization activities (Bikard et al., 2018). 

However, in addition to formal relationships (i.e. collaborations reflected in co-

authorship), informal relationships (i.e. collaborations beyond co-authorship) are also crucial 

for accessing specific resources such as advice, ideas and fun (Brennecke & Rank, 2016; 

Chollet & Revet, 2023). In addition, different collaborations may enable the access to different 

resources, and open different possibilities for labor division. For example, collaborations with 

industrial colleagues enable access to facilities, equipment and data (Ankrah & AL-Tabbaa, 

2015). Thus, depending on their research objectives, researchers can develop and mobilise 

specific relationships in their research network. However, despite recent research on the types 

of resources scientists can mobilize (Ankrah & AL-Tabbaa, 2015), the role of informal 

relationships (Brennecke & Rank, 2016; Chollet & Revet, 2023), the consequences of academic 

labour division (Teodoridis et al., 2019; Walsh et al., 2019) or its many forms (Haeussler & 

Sauermann, 2020), we still know little about how scientists’ collaboration strategies relate to 

their specific research interests and motivations. Getting a better understanding of specific 

network relationships that support scientists’ access to complementary resources may permit to 

identify the bottlenecks of different knowledge production activities and the main channels for 
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scientists to improve their productivity. Therefore, it constitutes the objective of this study to 

examine the network mobilization strategies of scientists with different research motivations 

and focus. 

Building on network research, we develop a theoretical framework that proposes that 

the forms and functionality of relationships used by scientists differ according to their 

contribution profile. According to the quadrants of the Stokes model, scientists differ in terms 

of the industrial and social impact of their research, on the one hand, and in terms of the extent 

to which it advances fundamental knowledge (Stokes, 2011). Given these differences, scientists 

may develop not only different networks but may also rely on different relationships to access 

complementary resources.  

Identifying the network peculiarities across the four Stokes quadrants entails depicting 

the forms of network mobilization strategy of scientists with different research profiles. 

Consequently, it is important to trace the complementary resources activated by the scientists 

(Georghiou, 1998), and the form in which the relationship was mobilized (formally, i.e. as part 

of a co-authorship relationship or informally, and therefore not captured by the study of co-

authorship networks) (Paul-Hus et al., 2017; Rotolo et al., 2022; Tian et al., 2021). For that 

purpose, we collected primary and bibliometric data on 116 scientists active in biotechnology 

in the Netherlands. Our results suggest that different knowledge creation profiles across 

Stockes’ model are associated with particular ways of mobilizing the network to access specific 

research resources.  

This study contributes to the economics of science, which has extensively documented 

academics motivations, practices and productivity, by bringing insights from an ego-centric 

network approach (McFadyen et al., 2009). We provide evidence that scientists with different 

profiles do not only differ in their research focus and results. Due to their different knowledge 

creation objectives, they differ in the way they mobilize their collaboration networks, in terms 

of size and composition of the network, as well as the type of resources sought.  

The paper is organized as follows. Section 2 reviews the literature on scientific 

collaboration by focusing on resources sought in the network and exchanged between scientists. 

Section 3 describes the context of our empirical study and the data collection approach. Section 

4 presents the results of our statistical analyses. Section 5 synthesizes and discusses the main 

findings of our study. 
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2. Literature review 

2.1. Scientists’ research motivation and profiles 

Scientists, in their knowledge creation activities, may pursue several objectives, mixing 

academic knowledge advancement on the one hand, and practical use for the benefit of society 

on the other. The former can be referred to as basic research. It is characterized by its orientation 

based on curiosity and the will to develop new knowledge for its own sake (Salter & Martin, 

2001), and its objective of generalization (Pavitt, 1991). The latter is labelled as applied science 

and is inspired by considerations of use and application in industry, relating to technology, 

techniques, methods and design (Balconi & Laboranti, 2006).  

The spectrum of basic/applied research is broadly adopted to understand scientists’ 

research orientations (Berbegal-Mirabent & Sabate, 2015; Fan et al., 2021; Hameri, 1996; 

van Raan & van Leeuwen, 2002). To take into account the extent to which individual scientists 

can combine these two aspects in their research, Stokes (2011) suggests a two-dimensional 

classification that describes four quadrants - corresponding to four research profiles - in which 

scientists can be classified (see Figure 1). The first dimension takes into account scientific 

interest and the quest for fundamental understanding. In this dimension, the extent to which the 

scientist's work seeks relevance for generalized knowledge is taken into account. The second 

dimension accounts for technical interest and consideration of use. This dimension captures the 

extent to which the scientist's work seeks relevance for immediate applications. 

Edison scientists are described as scientists interested only in pure applied research, 

working to develop knowledge and propose inventions that meet the needs of individuals and 

society (Baba et al., 2009). Bohr scientists, also referred to as Star scientists, are defined as 

scientists with a strong interest in science and pure basic research (Colen et al., 2022; 

Sauermann & Stephan, 2013). They are individuals who are “oriented to the pursuit of 

knowledge and understanding for its own sake through scientific discovery, having little interest 

in the potential uses of the research findings for the real world” (Baba et al., 2009, p. 757). 

Finally, Pasteur scientists are individuals who bridge the gap between science and technology 

by being heavily involved in both the development of high quality theoretical knowledge and 

the development of its application in the real world (Baba et al., 2009). This latter profile can 

be associated with the concept of the academic-inventor, scientists who are highly successful 

both in publishing academic papers (reflecting their commitment to fundamental 

understanding) and in patenting (invention activity associated with consideration of use) 

(Fabrizio & Di Minin, 2008; Franzoni, 2009; Subramanian et al., 2013; Van Looy et al., 2006). 
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---------------------------------  INSERT FIGURE 1 HERE  --------------------------------- 

Several studies have investigated scientists' profiles (e.g. Amara et al., 2019; Baba et 

al., 2009; Siegel, 2022; Subramanian et al., 2013; Tushman & O’Reilly, 2007).  They focused 

on understanding the specificities of scientists' in terms of knowledge production. Individual 

scientists, depending on their profile, are described as performing differently in their knowledge 

creation activities (Shichijo et al., 2015). On the one hand, scientists oriented towards 

fundamental understanding are more likely to publish a greater number of scientific papers, and 

generate more impactful papers for the scientific community (Baba et al., 2009; Colen et al., 

2022; Subramanian et al., 2013). In this approach of the productivity of scientists, many 

researches have focused on star scientists (Bohr profile) due to their outstanding publication 

performance  (e.g. Calderini et al., 2007; Colen et al., 2022; Liu et al., 2018; Mohnen, 2021; 

Oettl, 2012). On the other hand, scientists who are more use-oriented are particularly invested 

in invention activities and consequently demonstrate above average patent records 

(Subramanian et al., 2013). Thus, depending on their profile, the knowledge creation of 

scientists could be assessed by two types of outputs, publications and patents, in which they 

perform differently. One should take into consideration that this is a general trend, and therefore 

that for example scientists with a weak orientation towards the application of knowledge created 

to contribute to industry and society may nevertheless have some ²patenting activity (Zucker et 

al., 1998).  

2.2. Role of scientists’ profile in seeking resource in academic or industrial networks 

Scientists' research orientations, as reflected in Stokes' (2011) four quadrants, are likely 

to affect the nature of the collaborators in the research network of individual scientists, with the 

distinction being made between networks including academic versus industry scientists 

(Haeussler, 2011; Sauermann & Stephan, 2013; Subramanian et al., 2013).  

Collaborations between industrial and academic scientists are known to have an impact 

on their knowledge creation. Previous research suggests that academic scientists involved in 

collaborations with industry may experience lower publication rates due to the pressure from 

industry to protect intellectual property through patents or secrecy (Bikard et al., 2018). Colen 

et al. (2022) argue that the strong commitment of Bohr scientists to scientific discovery and 

open science may hamper any commitment to extensive collaborations with industry . Pasteur 

scientists, on the contrary, can benefit from a more optimal division of labor by having 

collaborators from both industry (focus on commercial uses) and academia (focus on scientific 

discoveries) (Bikard et al., 2018). Patenting and publishing activities can be complementary, 

up to a certain threshold beyond which the two knowledge creation activities become substitutes 
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(Crespi et al., 2011). Scientists fitting into the Pasteur and Edison profiles can be described as 

'bridging scientists' spanning academic and industrial domains (Subramanian et al., 2013). 

Science-technology interactions among scientists from these two worlds are also known to be 

highly skewed, involving only a few scientists (from the Pasteur profile), that are engaged in a 

large number of interactions (Agrawal & Henderson, 2002; Balconi et al., 2004). While, as 

previously discussed, scientists of various profiles engage differently in the creation of 

knowledge outputs, it is important to stress that the choice to engage in publication or patent 

production does not in itself constitute an interaction with industry, but rather a move towards 

proprietary knowledge and commercialization activities (D’Este & Patel, 2007). 

Beyond scientists' research aspirations, the content of the exchanges that may exist 

between academic and industrial scientists can be the source of different patterns of 

collaboration. Research has a long history of identifying the different channels of collaboration 

between scientists in academia and industry. These collaborations are varied and can take place 

through contracted research activities, employment of academic scientists by industry, 

entrepreneurial activities such as joint ventures and spin-offs, consultancy work, consortia, 

networks and alliances (Ankrah & AL-Tabbaa, 2015; Bekkers & Bodas Freitas, 2008; D’Este 

et al., 2019; D’Este & Patel, 2007; Perkmann et al., 2011). Furthermore, the literature tends to 

argue that the relationship between academia and industry is increasingly close, and that the 

traditional boundary between the two is becoming blurred (Subramanian et al., 2013): the 

academic and industrial domains are no longer "separate worlds" (Haeussler, 2011, p. 108).  

Therefore, it seems important to better understand how these two worlds are related and 

what differences between them persist. First, these partnerships and collaborations between 

academic and industry scientists are recognized as a way for companies to access basic research 

as well as to develop applied research (Balconi & Laboranti, 2006; Cassiman et al., 2018). 

Therefore, collaborations between scientists in academia and industry are desirable for firms as 

it allows them to nurture their research activities, and to benefit from the inputs of scientists 

conducting basic research, mainly located in academia (Agarwal & Ohyama, 2013). Second, 

academia and industry provide access to different but potentially complementary physical 

capital (Agarwal & Ohyama, 2013). Indeed, tangible resources and reusable assets such as 

equipment and machines, technologies and raw materials, as well as sources of funding, 

accessible in academia or in industry, may differ. Thus scientists from different profiles, 

depending on their needs for such resources, may benefit differently from their research 

network in the two worlds. Collaborations between scientists from academia and industry is 

described as a way to gain access to complementary assets and to overcome the limitation of 
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one domain or the other (Baba et al., 2009). These elements suggest that scientists with different 

research profiles collaborate differently with industry, both in the extent to which they mobilize 

their industrial research network, and in the resources they seek in that network. 

2.3. Role of scientists’ profile in seeking resource in formal or informal networks 

Every individual scientist, in their knowledge creation activities, is led to develop a 

research network with collaborations of different natures, rather formal or informal, both of 

which are widely recognized in the sciences as having different contributions and thus allowing 

access to various resources. On the one hand, formal relationships are clearly visible and 

identifiable relationships, leading to co-authorship or co-invention (depending on the type of 

knowledge output considered) (Apa et al., 2021). These relationships are guided by identified 

contribution rules, some of them common to all scientific work and others depending on the 

scientific discipline. These rules generally imply that each collaborator listed on the knowledge 

output has had a significant contribution in this knowledge creation work, according to the 

modalities of division of scientific work (Haeussler & Sauermann, 2020; Sauermann & 

Haeussler, 2017). On the other hand, other forms of collaboration remain "invisible" in the 

sense that they do not materialize directly through knowledge outputs (Apa et al., 2021). 

However, these more informal collaborations are also a key means used by individual scientists 

to access information, knowledge, and to receive advice or recommendations useful to their 

knowledge creation work (Birnholtz, 2006; Chollet & Revet, 2023; Haeussler & Sauermann, 

2013; Paul-Hus et al., 2017; Tian et al., 2021). These invisible relationships may also involve 

participating in the division of scientific labor but on tasks or contributions that are generally 

accepted as not significant enough to lead to co-authoring or co-patenting. 

Scientists are influenced by their peers through social comparison (Tartari et al., 2014). 

This social influence has direct impact on scientists’ knowledge creation. For example, 

coauthoring with a star scientist (Bohr profile) has a positive impact on their peers’ research 

performance in term of impact and citations (Betancourt et al., 2023). Scientists performing 

basic research also more generally affect positively the productivity of their colleagues, even 

when they do not co-author papers (Yadav et al., 2023). Collaboration exists beyond the co-

authorship relationship. However, this questions how  formal and informal relationships differ 

in what they provide to a focal scientist. 

This social influence among scientists is not limited to scientists’ knowledge creation 

performance, and may affect their exchanges and interactions with both academia and industry 

(Tartari et al., 2014). Indeed, knowledge creation and the associated exchanges with industry 

are rooted in social exchange phenomena involving informal exchanges (Ankrah & AL-Tabbaa, 
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2015). Although most studies focus on formal collaborations, informal forms have be shown to 

be more beneficial to the innovation performance of companies (Apa et al., 2021; Perkmann et 

al., 2013). Thus, if informal collaborations are beneficial for companies and act as a channel for 

knowledge transfer, it seems interesting to question to what extent they can also be beneficial 

for scientists and be a vehicle for the exchange of other types of resources than knowledge. 

Additionally, formal collaboration channels between academic and industry scientist appear to 

play only a limited role in knowledge resources exchanges between the two worlds (Baba et al., 

2009), suggesting that informal collaborations could alternatively be important such exchanges. 

The resources contributed by partners in the context of academia-industry collaborations are 

central to addressing critical resource needs such as funding, equipment and skilled staff 

(Rybnicek & Königsgruber, 2019). This sharing of resources from industry through informal 

relationships is also a way of influencing the research efforts of scientists, without engaging in 

formal collaborations leading for example to co-authoring publications (Rotolo et al., 2022). 

These elements suggest that the resources sought do not simply differ according to the 

nature of the network, academic or industrial (as previously established), but also according to 

the form of collaboration, formal or informal. Scientists from different research profiles, 

depending on the needs associated with the type of research conducted, may therefore benefit 

differently from formal or informal collaborations in their seeking of different resources. 

3. Methodology 

To capture the way scientists activate their networks to access different types of 

resources, and to understand the effects of these strategies on their knowledge creation 

performance, we sequentially collected data from two complementary sources. First, we 

collected bibliometric data on an identified population of biotechnology scientists in the 

Netherlands, and then we integrated this information into a questionnaire sent by e-mail to them. 

3.1. Setting 

Our empirical study focuses specifically on the biology and biotechnology sector. It is 

widely accepted that there are differences between sectors and disciplines in the way they 

approach knowledge production, collaborations and relationships with industry (Bekkers & 

Bodas Freitas, 2008). The biology and biotechnology sector is recognized as a high-impact, 

high-stakes sector in which industry and the public sector collaborate closely (Powell et al., 

1996; Soh & Subramanian, 2014). It is a sector that, due to its specificities, has been the focus 

of much research attention (e.g., Colen et al., 2022; Franzoni, 2009; Gittelman & Kogut, 2003; 

Lim, 2004; Perkmann et al., 2011; Subramanian et al., 2013).  
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Because there are differences in the academic system, in funding, support and incentive 

policies between countries, we also decide to restrict our study to a specific national context, 

that of the Netherlands. The Dutch academic system is based on research and technical 

universities. While research universities are focused on academic activities, technical 

universities are known to focus more on practical aspects and applications. 

Four interviews with key informants in the Netherlands (professor emeritus in biology, 

director of a research center in biology and biotechnology, professor and business development 

director in a research center in biology, coordinator of intellectual property at the university) 

inform us about the specificities of the field to be taken into account in our investigations. 

The choices on the research setting lead us to identify an initial list of 820 scientists with 

an affiliation to a Dutch university (either research or technical university) in a biology and 

biotechnology research laboratory. We supplement this initial list with a snowball method by 

including the Dutch co-authors of these individuals, who may be affiliated with other research 

laboratories, private organizations or industrial companies. Indeed, as the field of biotechnology 

is multidisciplinary, it is appropriate to integrate those scientists who are affiliated to other 

research laboratories, but who also work on these themes (in collaboration with scientists 

specialised in biotechnology). This approach allows us to build a list of 1776 individuals, of 

which 1511 individuals for whom we are able to manually retrieve a valid email address. 

3.2. Data collection 

3.2.1. Bibliometric data 

Regarding the bibliometric data collection, we manually collected data on publications 

(from Web of Science and Google Scholar) and patents (see e.g., Bikard et al., 2018; Bikard & 

Marx, 2019; Bourelos et al., 2017; Breschi et al., 2005; Meyer, 2006) for all 1511 identified 

scientists. These data provide us with information on the knowledge creation performance of 

each scientist with a valid email address. These bibliometric data also allow us to identify the 

list of formal collaborators of each scientist. 

3.2.2. Survey data 

In a second step, we integrate the bibliometric data into a questionnaire. The 

questionnaire aims to obtain information about the colleagues with whom the scientist 

collaborates, the nature of their relationship, and the resources sought from each colleague. 

Two of the interviewees provided detailed qualitative feedback on the questionnaire 

items, based on their expertise in the field of biotechnology and the specificities of the 

Netherlands. Additionally, pre-test of the questionnaire was conducted with 6 biotechnology 

scientists, and feedback from them regarding their understanding of the questions, the language 
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and technical words and the collaborations practices was collected through telephone 

interviews. 

We administered the final version of the questionnaire to our study population through 

an email invitation. We obtained 117 questionnaires, corresponding to a final response rate of 

7.7%. Due to missing data on our main collaboration variables in one questionnaire, 116 were 

used for the analyses. 

3.3. Variables 

The operational definitions of all the variables are presented in detail below and in 

Appendix A. 

3.3.1. Dependent variables 

Studies operating Stokes's quadrant model of scientific research are rare (Amara et al., 

2019), and the approaches heterogeneous. Several authors suggest to operationalize the two 

dimensions of the model through the knowledge outputs of scientists (Baba et al., 2009; 

Gittelman & Kogut, 2003; Martínez et al., 2013; Subramanian et al., 2013). It is thus proposed 

that a higher number of academic publications and high citations of these publications capture 

the dimension of fundamental understanding, while the presence of patenting activity accounts 

for the consideration of use. However, this approach has its limitations, related to the fact that 

basic research oriented scientists can also report patents (Zucker et al., 1998) and that patents 

are not the only way to consider the use of knowledge created in society (Amara et al., 2019). 

An alternative may be to consider the research motivations of scientists, taking into account 

both the intellectual challenge and the contribution to society (Amara et al., 2019). 

In this study, we adopt a mixed approach of these two methods. On the one hand, 

concerning the first dimension of the model on the quest for fundamental understanding, the 

method based on motivations does not appear to be appropriate for differentiating the profiles 

of scientists. Indeed, the answers obtained on the motivation to advance knowledge and 

intellectual curiosity show that this criterion is central for a large majority of the respondents 

(79.3% answered "very important"). Therefore, the knowledge output approach seems to be the 

most appropriate to differentiate the respondents. To operationalize this dimension, we consider 

that a scientist has a high quest for fundamental understanding if they have an above average 

number of citations per published academic article or if they have published in journals 

recognized for their key role in the advancement of scientific knowledge (Nature or Science). 

On the other hand, regarding the second dimension of the model on consideration of 

use, and to avoid the limitations identified with regard to the use of patents to capture this 

dimension, we focus on the scientist's motivation to make a contribution to society (43.1% 
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answered "very important"). This is consistent with the information collected during the 

qualitative interviews with key informants who indicated that while patenting was an option, 

some scientists might not go through this option (expensive and not always advantageous for 

scientists due to specific university policies), and might thus for example decide instead to work 

directly with companies or to create their own spin-off. This can be observed for our 

respondents since one third of the scientists declaring a very high motivation to contribute to 

society do not have any patenting activity. 

3.3.2. Network variables 

To be consistent with our theoretical distinction between academic and industrial 

networks, and formal and informal networks, the questionnaire includes four questions to 

capture these different collaborations. More precisely, the questionnaire is based on two forms 

of network question. First, integrating the bibliometric data, we list all co-authors over the last 

5 years of each individual scientist1. We then ask them to choose from this list of formal 

collaborators up to 5 names of colleagues with whom they have collaborated closely.  

Second, we use a name generator (Knoke & Yang, 2008) to capture the informal 

collaboration network of each scientist. We ask them to name up to 5 colleagues with whom 

they have collaborated closely in the last 5 years, but who are not co-authors in this period.  

Finally, for each of these two types of question, we distinguish between scientists 

colleagues having their main affiliation in academia or industry. This approach allows each 

individual scientist to identify up to 20 colleagues in their network. 

To study the collaboration of scientists and to see to what extent each individual scientist 

relies on different networks, we use several variables. To capture the extent of the network of 

each individual scientist, we use a binary variable Large Network that indicates scientists with 

an above average number of contacts (one standard deviation above the average of all 

respondents). Then, to capture the nature of this overall network, we rely on two other variables: 

Informality (academia) represents the share of academic informal contacts among all listed 

colleagues, and Industrial measures the part of colleagues in industry in the whole network. 

In a second phase of the survey, we use name interpreters to collect information or each 

colleague identified the individual scientists. This information includes socio-demographic data 

(gender, age), affiliation (at the same institution as the scientist concerned, at another institution 

in the Netherlands, or outside the Netherlands), the nature of the relationship (PhD student or 

                                                 

1 In cases where the number of collaborators over the last 5 years is greater than 100, the most frequent co-authors 

were listed. 
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supervisor) and the strength of the relationship (duration of the relationship, ongoing 

collaboration). 

3.3.3. Resources variables 

In addition to the name interpreters, we further asked respondents to consider the last 

collaboration they had with each identified colleague, and to identify the contributions and 

resources provided by that colleague. Respondents were then given a list of 7 resources to 

choose from, including Knowledge, Idea, Skill, Equipment, Data, Funding, and Fun (see 

Appendix B). Respondents were given the option, for each colleague, to indicate one, several, 

or no resources. These data were then aggregated to consider the presence of each resource 

according to the type of network mobilized (academic or industrial, formal or informal), taking 

into account the proportion of contacts from the same type of network that were used to seek 

this resource. 

In addition to these variables, we also take into account the multiplexity in the 

relationship with colleagues, in other words the extent to which respondents mobilize the same 

colleague to access several resources. The Multiplexity variable therefore indicates the average 

number of resources provided per colleague in the individual scientist’ network. This variable 

is computed by measuring for each contact identified by the scientist, the number of resources 

contributed by that contact (between 0 and 7), and then averaging this value over all contacts 

in the individual scientist's network. 

Finally, the Scarcity variable counts the number of resources for which the respondent 

mobilizes only one person in their network to access them. The objective of this variable is to 

account for the extent to which each scientist has a complementarity strategy by mobilizing 

several colleagues to access the same resource. 

3.3.4. Control variables 

To take into account other individual aspects that may interact with the elements 

analyzed in this study, we also consider some control variables at the individual level. First, we 

include variables to capture the socio-demographic characteristics of the scientists, namely son-

in-law (if the scientist is a Male), and academic status (binary variable at 1 if the scientist has a 

status of Professor, full professor, emeritus professor; 0 otherwise). Then, to take into account 

the specificities of the Dutch academic system, we also control for the scientist’s main 

university affiliation (dummy variable at 1 if affiliated in a Technical university, 0 otherwise). 

Finally, we capture the fact that respondents have completed their PhD abroad or a Post-doc 

abroad through two binary variables. 
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3.4. Estimation approach 

The aim of our analyses is to examine the differences between scientists of different 

profiles, both in the way they mobilize their network and in the way they search for resources 

in the network. To study the characteristics of the different profiles of scientists, we first present 

a set of descriptive statistics and bivariate analyses. 

In a second step, we perform regressions that aim to capture the factors that explain why 

scientists belong to different profiles. In accordance with the nature of our dependent variable 

based on the 4 scientists’ profiled derived from Stokes’ quadrant model of scientific research, 

we use the multinomial logit estimation method, as it is the most appropriate model for multi-

value unordered dependent variables. The tinkering assignment (with low consideration of use 

and low quest for fundamental understanding) was considered as the reference assignment. 

4. Results 

Table I provides the descriptive statistics of the main variables used in the regression 

analyses of this study. Our sample consists mainly of men (n=12, 87.93%), working in a 

research university (n=81, 69.83%). Most of them obtained their Ph.D. in the Netherlands 

(n=89, 76.72%) on average 23 years ago (s.d. = 12.86). A majority of respondents have the 

status of professor (professor, full professor or emeritus professor, n=50, 43.10%), the other 

respondents being assistant professor (n=24, 20.69%), associate professor (n=17, 14.66%) or 

researcher (n=17, 14.66%). 8 respondents have a position outside academia (6.90%). 

---------------------------------  INSERT TABLE I HERE  --------------------------------- 

While no correlation is high enough to suspect multicollinearity, some expected 

relationships become apparent. Logically, respondents who obtained their doctorate longer ago 

(career duration) are more likely to have the status of professor, full professor or emeritus 

professor. Having a more developed industrial network implies having a larger whole network 

(network size). As might be expected, multiplexity is correlated with all resources measures 

(knowledge, idea, skill, equipment, data, funding and fun).  

4.1. Scientists' profiles and bivariate analysis 

Figure 2 presents the distribution of scientists of our sample across the four quadrants 

of Stokes’ model of scientific research. The distribution shows that a majority of scientists fall 

into the tinkering category (32.76%) while the rarest scientist profile is the Pasteur profile 

(18.97%). Both the Bohr and Edison profiles account for 24.14% of the scientists in our sample. 

This fairly balanced distribution allows us to compare the characteristics of scientists belonging 

to each profile. 
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---------------------------------  INSERT FIGURE 2 HERE  --------------------------------- 

Table II provides a picture of the scientists in our sample by comparing the four 

quadrants (profiles) to which they belong. Regarding the characteristics of individual scientists, 

these results show that belonging to different profiles does not depend on the scientist's gender, 

career duration or affiliation. While having the status of professor is significantly more frequent 

for researchers in the Pasteur profile compared to the Edison profile (t-test(114)=2.44, p<0.1), 

the difference between the other profiles is not significant. Having done a PhD abroad does not 

influence the fact that a scientist belongs to one profile rather than another. However, doing a 

post-doctorate abroad is significantly more important for scientists with a high quest for 

fundamental understanding (namely Bohr and Pasteur profiles). Doing a post-doc abroad is a 

prestigious opportunity that is widely recognized as beneficial for an academic career and is 

generally followed by the most motivated PhD students in terms of developing expertise and 

in-depth knowledge. 

---------------------------------  INSERT TABLE II HERE  --------------------------------- 

In line with what has been reported in the literature (Subramanian et al., 2013), scientists 

with a high consideration of use (Edison or Pasteur profile) show the highest patenting activity 

(t-test(114)= 9.59, p<0.01). Examining the connections with industry, we show that scientists 

with high consideration of use are significantly more involved in spin-off or start-up 

development than scientists with low consideration of use (t-test(114)= 4.95, p<0.05), and 

mobilize more funding from industry sources (t-test(114)= 4.84, p<0.05). However, these 

differences between scientists with research seeking relevance for immediate application to a 

greater or lesser extent are not significant with regard to having a part-time position in industry 

or using predominantly industrial knowledge. This may reflect specificities in the context under 

study. 

When looking at the research networks of scientists, we observe that scientists with 

various profiles differ in several aspects. Pasteur scientists have the largest whole network, 

significantly larger than Bohr scientists (t-test(114)= 2.63, p<0.05). While the size of the 

academic network of all scientists is similar, Bohr scientists rely significantly less on contacts 

from industry compared to scientists with a strong consideration of use (Edison, t-test(114)= 

3.16, p<0.05; and Pasteur, t-test(114)= 3.78, p<0.01). In addition, scientists with a higher 

consideration of use have a significantly larger formal network (t-test(114)= 6.76, p<0.05). 

However, the use of the informal network does not differ across scientists' profiles. 

With respect to the characteristics of the networks mobilized by scientists, these also 

show variations depending on the profile. Scientists with a research strategy oriented only 
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towards basic research (Bohr) or applied research (Edison) mobilize a more local network 

within their university of affiliation (t-test(114)= 4.89, p<0.05). Moreover, scientists with a high 

quest for fundamental understanding develop a more international network (t-test(114)= 6.67, 

p<0.05). Edison scientists collaborate most extensively with their former thesis supervisor(s), 

and on the contrary work little with Ph.D. students. No significant differences were found in 

the duration of the relationships maintained by the scientists with their network according to 

their profile. 

Finally, looking at the resources sought by scientists in their research network, we find 

several interesting results. First, knowledge and ideas, central to all research work, are the 

resources most mobilized by scientists, regardless of profile. Second, equipment and data are 

also sought by all scientists in similar ways. Third, we observe that scientists oriented towards 

applied research (Edison profile) rely less on their network to access skills, compared to other 

scientists (F(3,112)= 3.23, p<0.05). Fourth, we find that scientists strongly committed to 

contributing to society (Edison and Pasteur profiles) rely more on their research network to seek 

funding (t-test(114)= 5.40, p<0.05). Fifth, scientists oriented towards fundamental 

understanding (Bohr and Pasteur profiles) are more likely to look for colleagues with whom 

they enjoy working, who bring fun and motivation (t-test(114)= 4.86, p<0.05). 

4.2. Regression results 

For our regression analyses, we run two main multinomial logit estimation models. Both 

models include control variables on the individual characteristics of the respondents, as well as 

variables characterizing the network of each respondent, both in terms of size, informality, and 

industry linkage. The first model, whose results are presented in Table III, tests more 

specifically the effect of multiplexity and scarcity of resources; while the second model (see 

Table IV) tests the effect of each of the seven resources to which collaborators in the research 

network can contribute. 

----------------------------  INSERT TABLE III  AND IV HERE  ---------------------------- 

The results of both models suggest that scientists with different profiles differ 

significantly in several individual characteristics. Scientists with a high quest for fundamental 

understanding (Bohr and Pasteur profiles) do more post-doctoral work abroad. Scientists 

developing pure basic research (Bohr profile) or user-inspired research (Pasteur profile) are 

more likely to have professor status compared to those developing pure applied research 

(Edison profile). We also find significant differences in the networks of the scientists of the 

different profiles, notably concerning the Bohr scientists who rely more on their informal 

network, and significantly less on collaborators from industry. 
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Regarding the mobilization of resources in the research network, it appears that the four 

profiles of scientists do not differ significantly either in the multiplexity in the network or in 

the scarcity of resources (see Table III). However, when we study in detail how scientists from 

different profiles seek different types of resources in their research network (see Table IV), we 

find significant differences. Scientists with a Bohr profile rely less on their network to access 

knowledge resources, but more to access fun resources compared to scientists with other 

profiles. They also rely less on their collaboration network to access equipment, compared to 

other researchers with a high quest for fundamental understanding (Pasteur profile). In addition, 

scientists with a low consideration of use (Bohr and Tinkering profiles) mobilize their network 

more to access expertise compared to scientists doing pure applied research (Edison profile). In 

contrast, scientists with a high use consideration (Pasteur and Edison profiles) use their network 

more to access funding compared to scientists doing pure basic research (Bohr).  

5. Discussion and conclusion 

Scientists pursue a variety of goals. Some seek to advance knowledge for the sake of 

knowledge while others preferably work on its applications (Stokes, 2011). Similarly, scientists 

vary in the type of impact they want to make (Cohen et al., 2020). These differences in 

contribution profiles must be accounted for when studying the conditions to which scientists 

can perform at their best. In this paper, we suggest that differences in contribution profiles imply 

differences in terms of network mobilization. We surveyed a sample of researchers in 

biotechnologies, in the Netherlands, about the types of resources they seek from their 

collaborators in the broad sense – not just the people appearing formally as their co-authors. 

Our results show that the types of relationships and resources sought from network mobilization 

vary across Stokes’s quadrant.  

Consistent with prior findings (e.g., Shichijo et al., 2015) and quite intuitively, Edison 

and Pasteur profiles tend to have more collaborators from the industry than Bohr and Tinker 

profiles. Another set of findings seems to reflect the specific division of labor required for each 

profile to conduct research successfully. “Funding” is a resource sought for significantly more 

by Edison and Pasteur profiles, consistent with their focus on more immediate impact, which 

often entails a strict attachment of a project to a specific funding, often commissioned by key 

stakeholders. Also, Bohr profiles seek from their collaboration more skills in specific 

experimental or analytical techniques and less pure knowledge of a research topic, especially 

relative to Edison profiles. This difference probably reflects indirectly the resources these 
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profiles already possess as human capital and thus what resources are complementary to theirs 

(Edison profiles holding the skills and Bohr profiles, knowledge). 

Perhaps less intuitive is the finding that the level of informality (the proportion of people 

among academic contacts cited as collaborators that are not co-authors) is significantly higher 

among Bohr profiles (i.e., scientists with a strong impact in the publication world and a low 

focus on impacting society). By definition, Bohr profiles work on less structured problems or 

objectives than Edison and Pasteur scientists, and spend most of their time exploring “the 

unknown”. This higher open-endedness has two implications for collaboration work. First, an 

important amount of energy must be assigned to idea development, testing and refinement, to 

define a project. This is where informal interactions are known to be essential, people consulting 

with colleagues to obtain feedback on their ideas and “mutual stimulation” to develop further 

an ill-defined idea (Laudel, 2002). Second, the set of resources they need is necessarily less 

definable ex-ante than for projects where the problem is highly structured. Thus, Bohr profiles 

need to maintain a pool of potential contributors who may or may not become co-author at some 

point in a given project, depending on what resource turns out to be needed. This could also 

explain why, in our findings, the resource “fun” is more cited among Bohr profiles when 

qualifying resources brought by collaborators. In situations where the actual set of tasks is 

uncertain and open ex-ante, relying on strong and trusted relationships is a good way to 

guarantee the minimal level of common understanding and mutual commitment to allow 

adaptation along the way (McFadyen et al., 2009). 

The contribution of the paper is three-fold. First, the literature examining what resource 

scientists seek from collaborators is still incomplete. Some research consists in surveying 

scientists about their motives for collaborating with someone, in search of how these patterns 

vary according to individual or contextual characteristics (Bozeman & Corley, 2004; Bozeman 

& Gaughan, 2011; Muriithi et al., 2018). This paper extends this line of work by suggesting 

that resources sought for by scientists also depend on their orientation in terms of consideration 

for use and focus on fundamental understanding (Stokes, 2011). Second, we contribute to the 

many reflections on how scientists engage with industry and society at large (Agarwal & 

Ohyama, 2013; Sauermann & Stephan, 2013; Tijssen, 2018). While prior work has studied how 

positions on the quadrant goes with differences in production outputs (e.g., (Shichijo et al., 

2015) or impact on organizational performance (e.g., (Baba et al., 2009; Perkmann et al., 2021; 

Subramanian et al., 2013), research examining networking behaviors are rare and focus only 

holistic constructs such as the proportion of industry contacts (e.g., Ng et al. 2015, cited in 

Tijssen, 2018). Delineating specifically the resources sought through these relationships helps 
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better understanding the division of labor that sustains each type of research effort. Third, we 

contribute to the growing efforts to take into account a wider range of collaborations, not limited 

to coauthorship but including traditionally invisible informal collaborations (e.g., Apa et al., 

2021). In line with these efforts, this work provides further reflection on the different 

contributions of formal and informal relationships, involving different contributions. 

However, this paper also comprises limitations that further work need to address. First, 

the field of biotechnologies has peculiarities that limit the generalizability of our findings. 

Innovations in biotechnologies are heavily “science-based”, in the sense that it relies heavily 

on research produced by universities and public research agencies (Coriat et al., 2003). 

Accordingly, university/industry linkages are particularly widespread and essential to the 

creation of commercializable products or services (George et al., 2002; Kolympiris et al., 2015; 

Stuart et al., 2007). Research in other fields might show different patterns of network 

mobilization. Moreover, although relying on surveys allows better capturing the content of 

collaboration relationships and underlying motives, beyond what bibliometric measures can 

deliver, it also entails limitations. When surveyed on their network, respondents rely on their 

memory and thus can be biased (Shea et al., 2015). Also, due to the challenge of maintaining a 

reasonable survey length, our questions pertaining resources brought by collaborators where 

asked for the latest collaboration event. However, collaboration roles may rotate from one 

project to the other, leading some collaborators to bring different resources according to the 

project. 
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Figure 1. Stokes’ quadrant model of scientific research (based on Stokes (2011, p. 73)) 

 

 

Figure 2. Distribution of scientists across profiles (based on Stokes’ quadrant model of 

scientific research) 
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Table I. Correlations and descriptive statistics 

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 Male 1.00                 

                   

2 Professor 0.06 1.00                

  0.56                 

3 Technical university  0.07 -0.08 1.00               

  0.45 0.40                

4 PhD abroad -0.11 -0.03 0.13 1.00              

  0.24 0.78 0.17               

5 Post-doc abroad 0.03 0.15 -0.18 0.19*  1.00             

  0.78 0.11 0.06 0.04              

6 Large network -0.03 0.04 0.23* 0.16 -0.14 1.00            

  0.73 0.65 0.01 0.08 0.12             

7 Informality (academia) -0.01  -0.19*  0.18 0.12 -0.03 0.3228*  1.00           

  0.90 0.05 0.05 0.19 0.78 0.00            

8 Industrial 0.14 0.15 0.20*    -0.01  -0.24*  0.44* -0.12 1.00          

  0.12 0.11 0.03 0.95 0.01 0.00 0.18           

9 Multiplexity 0.00 0.03  -0.18*  -0.10 0.07 -0.09 0.01 -0.10 1.00         

  0.99 0.72 0.05 0.28 0.44 0.32 0.89 0.31          

10 Scarcity -0.01 -0.16 -0.08 0.07 0.03  -0.20* 0.03  -0.22*  -0.26*  1.00        

  0.94 0.08 0.39 0.43 0.77 0.03 0.03 0.02 0.00         

11 Knowledge  0.06 0.07  -0.21*   -0.25* 0.07 -0.14 -0.10 -0.15 0.68*   -0.17 1.00       

  0.55 0.47 0.03 0.01 0.46 0.13 0.27 0.10 0.00 0.08        

12 Idea  0.02 -0.03 -0.15 -0.15 0.02 -0.12 0.03 -0.15 0.76*  -0.15 0.65*   1.00      

  0.86 0.72 0.11 0.12 0.80 0.21 0.77 0.10 0.00 0.11 0.00       

13 Skill  -0.06 0.06 -0.07 0.06 0.03 -0.04 0.15 -0.14 0.63*   -0.06  0.32*   0.45*   1.00     

  0.51 0.52 0.43 0.51 0.74 0.71 0.10 0.13 0.00 0.50 0.00 0.00      

14 Equipment  -0.01 -0.03 -0.05 0.03 0.03 0.09 0.07 0.07 0.54*  -0.14 0.13  0.19*   0.32*  1.00    

  0.93 0.78 0.60 0.72 0.77 0.31 0.49 0.48 0.00 0.13 0.18 0.04 0.00     

15 Data  -0.18 0.07 -0.12 0.08 0.10 0.03 -0.01 0.03 0.57*   -0.15 0.23*   0.23*   0.26*   0.40*   1.00   

  0.05 0.48 0.21 0.41 0.27 0.73 0.94 0.74 0.00 0.11 0.01 0.01 0.01 0.00    

16 Funding  0.10 -0.13 0.08 -0.02 -0.09 0.11 0.02 0.14 0.42*    -0.21*  0.12 0.19*   0.02 0.20*   0.26* 1.00  

  0.28 0.17 0.38 0.80 0.33 0.26 0.84 0.13 0.00 0.02 0.21 0.04 0.82 0.03 0.01   

17 Fun  0.07 0.09  -0.21* -0.14 0.11  -0.23*  -0.08 -0.11 0.70*    -0.27*  0.43*   0.44*   0.27*   0.22*   0.22*  0.26*  1.00 

  0.46 0.34 0.03 0.15 0.25 0.01 0.40 0.26 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.01  

  Obs 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 

 Mean 0.88 0.43 0.30 0.23 0.53 0.18 0.22 0.19 3.14 0.77 0.78 0.66 0.51 0.29 0.19 0.22 0.50 

 Std. Dev. 0.33 0.50 0.46 0.42 0.50 0.39 0.20 0.20 1.21 0.91 0.26 0.32 0.28 0.25 0.24 0.20 0.36 

 Min 0 0 0 0 0 0 0 0 0.80 0.00 0.09 0 0 0 0 0 0 

  Max 1 1 1 1 1 1 1 1 6.20 3 1 1 1 1 1 1 1 
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Table II.  Description of the differences across the four Stokes quadrants 

  
Variable (average) 

Category Analysis of variance 

  Bohr Edison Pasteur rest   

  n 28 28 22 38 F-statistic p-value Sig. 

Descriptive 

Career duration 22.82 19.89 25.55 23.63 0.86 0.46  

Female 17.86% 10.71% 9.09% 10.53% 0.39 0.76  

Technical university affiliation 17.86% 39.29% 40.91% 26.32% 0.02 0.21  

Professor status 50.00% 25.00% 59.09% 42.11% 2.25 0.09 * 

PhD abroad 25.00% 17.86% 27.27% 23.68% 0.23 0.88  

Post-doc abroad 78.57% 32.14% 63.64% 44.74% 5.24 0.00 *** 

Industry 

relation 

Patent(s) 25.00% 57.14% 77.27% 47.37% 5.22 0.00 *** 

Part time in industry 3.57% 14.29% 9.09% 7.89% 0.68 0.57  

Spin-off creation 3.57% 14.29% 36.36% 13.16% 3.73 0.01 ** 

Industrial funding 3.57% 25.00% 27.27% 15.79% 2.20 0.09 * 

Use industrial knowledge 7.14% 17.86% 18.18% 18.42% 0.65 0.59  

Network 

Network size 7.79 9.46 10.73 8.42 2.72 0.05 * 

Network size (academic) 7.11 6.71 7.41 6.39 0.96 0.42  

Network size (industrial) 0.68 2.75 3.32 2.03 5.61 0.00 *** 

Network size (formal) 4.86 5.61 6.36 5.16 3.08 0.03 ** 

Network size (informal) 2.93 3.86 4.36 3.26 1.08 0.36  

Network 

characteristics 

Same affiliation 46.48% 41.90% 33.29% 33.26% 1.74 0.16  

Affiliation abroad 38.67% 21.32% 39.40% 30.19% 2.85 0.04 ** 

Male 72.98% 72.33% 76.41% 69.43% 0.59 0.62  

PhD students 20.51% 9.41% 20.72% 18.78% 2.09 0.11  

PhD supervisor 2.78% 10.38% 2.52% 3.95% 3.22 0.03 ** 

Short-term relationships 9.03% 7.14% 8.33% 13.18% 0.89 0.45  

Long-lasting relationships 65.54% 64.59% 69.95% 59.70% 0.74 0.53  

Resources 

Multiplexity 3.36 3.01 3.26 3.01 0.62 0.60  

Scarcity 0.79 0.86 0.59 0.79 0.37 0.77  

Knowledge 76.99% 80.90% 75.83% 77.94% 0.18 0.91  

Idea 71.11% 66.68% 62.55% 62.24% 0.50 0.68  

Skill 62.00% 39.05% 51.81% 50.53% 3.23 0.03 ** 

Equipment 28.71% 23.95% 38.32% 28.52% 1.43 0.24  

Data 19.34% 12.80% 19.79% 21.85% 0.77 0.51  

Funding 14.53% 27.97% 25.61% 21.19% 2.48 0.07 * 

Fun 63.12% 49.64% 52.03% 39.10% 2.51 0.06 * 
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Table III. Results of the multinomial logit regression analyses on resources multiplexity and scarcity 

  Bohr vs. Tinkering Edison  vs. Tinkering Pasteur  vs. Tinkering Edison  vs. Bohr Pasteur vs. Bohr Pasteur vs. Edison 

Controls                         

Male -0.61 (0.85) 0.10 (0.86) 0.01 (1.00) 0.71 (0.97) 0.62 (1.05) -0.09 (1.07) 

Professor 0.81 (0.61) -0.84 (0.59) 0.49 (0.60)  -1.65** (0.71) -0.32 (0.69) 1.33** (0.67) 

Technical university -0.06 (0.75) 0.62 (0.60) 0.82 (0.64) 0.68 (0.79) 0.88 (0.80) 0.20 (0.67) 

PhD abroad -0.37 (0.68) -0.65 (0.72) -0.20 (0.71) -0.28 (0.82) 0.17 (0.78) 0.45 (0.80) 

Post-Doc abroad 1.62** (0.67) -0.27 (0.57) 0.95 (0.62)  -1.89** (0.73) -0.67 (0.77) 1.22* (0.66) 

Network             

Large network 0.13 (1.42) 1.24* (0.75) 1.13 (0.81) 1.11 (1.43) 1.00 (1.43) -0.11 (0.81) 

Informality (academia) 2.78** (1.32) -0.81 (1.27) -0.52 (1.45)  -3.59** (1.49)  -3.30** (1.58) 0.29 (1.56) 

Industrial  -7.23*** (2.74) 0.50 (1.52) 0.60 (1.81) 7.74*** (2.87) 7.83*** (2.95) 0.10 (1.96) 

Resources             

Multiplexity 0.13 (0.25) 0.13 (0.25) 0.25 (0.25) -0.01 (0.29) 0.11 (0.27) 0.12 (0.28) 

Scarcity -0.07 (0.32) 0.25 (0.31) 0.00 (0.37) 0.32 (0.36) 0.07 (0.40) -0.25 (0.40) 

Constant -1.50 (1.37) -0.77 (1.34)  -2.54* (1.53) 0.73 (1.56) -1.04 (1.66) -1.76 (1.65) 

Nb. of observations 116            

Log likelihood -132.46***            

LR chi 2 (30) 52.25            

Pseudo R² 0.16                       

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 
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Table IV. Results of the multinomial logit regression analyses on resources types 

  Bohr vs. Tinkering Edison  vs. Tinkering Pasteur  vs. Tinkering Edison  vs. Bohr Pasteur vs. Bohr Pasteur vs. Edison 

Controls             

Male -0.88 (1.02) -0.50 (0.94) -0.52 (1.05) 0.37 (1.18) 0.35 (1.17) -0.02 (1.15) 

Professor 1.04 (0.77) -0.92 (0.67) 0.68 (0.65)  -1.97** (0.88) -0.37 (0.83) 1.60** (0.76) 

Technical university -0.33 (0.94) 0.41 (0.64) 0.86 (0.66) 0.74 (1.02) 1.19 (0.99) 0.45 (0.72) 

PhD abroad -1.05 (0.88) 0.25 (0.80) -0.28 (0.75) 1.29 (1.06) 0.77 (0.95) -0.53 (0.90) 

Post-Doc abroad 2.18** (0.85) -0.58 (0.66) 1.03 (0.66)  -2.76*** (0.95) -1.15 (0.92) 1.61** (0.74) 

Network             

Large network 1.44 (1.74) 1.53* (0.81) 1.43 (0.88) 0.09 (1.74) -0.01 (1.71) -0.10 (0.87) 

Informality (academia) 2.96* (1.55) -0.98 (1.37) -0.78 (1.50)  -3.94** (1.81)  -3.74** (1.81) 0.20 (1.68) 

Industrial  -9.41*** (3.45) 0.69 (1.70) 0.05 (2.01) 10.10*** (3.62) 9.46*** (3.62) -0.64 (2.21) 

Resources             

Knowledge  -5.28** (2.34) 1.61 (1.57) -0.96 (1.70) 6.89*** (2.54) 4.32* (2.51) -2.57 (1.92) 

Idea 2.10 (1.62) 0.17 (1.18) 0.14 (1.40) -1.92 (1.70) -1.95 (1.80) -0.03 (1.48) 

Skill 1.15 (1.34)  -2.65** (1.34) -0.48 (1.42)  -3.80** (1.55) -1.64 (1.54) 2.16 (1.58) 

Equipment -1.49 (1.68) -0.61 (1.37) 1.55 (1.34) 0.89 (1.87) 3.05* (1.80) 2.16 (1.51) 

Data -0.67 (1.64)  -2.83* (1.59) -1.95 (1.58) -2.16 (2.07) -1.29 (1.90) 0.88 (1.92) 

Funding -3.76 (2.33) 1.28 (1.71) 1.06 (1.80) 5.04** (2.55) 4.82** (2.47) -0.22 (1.90) 

Fun 4.24*** (1.32) 2.00* (1.03) 1.75 (1.13)  -2.25* (1.35)  -2.49* (1.47) -0.25 (1.15) 

Constant -0.11 (1.69) -0.40 (1.50) -1.53 (1.62) -0.30 (1.92) -1.42 (1.93) -1.12 (1.80) 

Nb. of observations 116                       

Log likelihood -114.10***            

LR chi 2 (45) 88.96            

Pseudo R² 0.28                       

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 
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Appendix A. Definitions of variables 

Name Description 

Scientist quadrant Categorical variable coded '1' if the respondent display a Bohr research profile, '2' for an 

Edison research profile, '3' for a Pasteur research profile, and '4' for the tinkering 

category. 

Male Dichotomous variable coded '1' if the respondent is a man, and '0' if the respondent is a 

woman 

Career duration   Count variable of the number of years since the respondent obtained their Ph.D. 

Professor Dichotomous variable coded '1' if the respondent has a professor status (professor, full 

professor, emeritus professor), and '0' if the respondent has another status (assistant 

professor, associate professor, researcher, or another status) 

Technical university  Dichotomous variable coded '1' if the respondent's main affiliation in a technical 

university, '0' if the respondent's main affiliation in a research university or an affiliation 

outside university  

PhD abroad Dichotomous variable coded '1' if the respondent obtained a Ph.D. outside The 

Netherlands, and '0' if the Ph.D. was obtained in The Netherlands 

Post-doc abroad Dichotomous variable coded '1' if the respondent had a post-doc experience outside The 

Netherlands, and '0' otherwise 

Network size Count variable of the number of contacts listed in the research network 

Informality (academia) Measured as the percentage of informal contacts listed in the academic research network 

Industrial Measured as the percentage of industrial contacts listed in the research network 

Multiplexity Measured as the average number of resources contributed per contact in the research 

network 

Scarcity Count variable of the number of resources provided by only one contact in the research 

network 

Knowledge  A series of seven measures of the percentage of contacts providing the resource in the 

research network 

 
Idea  

Skill  

Equipment  

Data  

Funding  

Fun  

 

Appendix B. Resource items 

Resource item Description 

Knowledge This colleague had knowledge and experience on the research topic. 

Idea This colleague brought creative ideas on research directions to pursue. 

Skill This colleague brought skills in specific experimental or analytical techniques. 

Equipment This colleague enabled access to equipments and instruments. 

Data This colleague facilitated access to data. 

Funding This colleague provided access to funding. 

Fun 
This colleague brought fun, energy and motivation to get started and conduct the 

research. 
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