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Abstract 

The catchword ‘green skills’ has been common parlance in policy circles for a while, 

yet there is little systematic empirical research to guide public intervention for meeting 

the demand for skills that will be needed to operate and develop green technology. The 

present paper proposes a data-driven methodology to identify green skills and to gauge 

the ways in which the demand for these competences responds to environmental 

regulation. Accordingly, we find that green skills are high-level analytical and technical 

know-how related to the design, production, management and monitoring of 

technology. The empirical analysis reveals that environmental regulation triggers 

technological and organizational changes that increase the demand for hard technical, 

engineering and scientific skills. Our analysis suggests also that this is not just a 

compositional change in skill demand due to job losses in sectors highly exposed to 

trade and regulation.  
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1 Introduction  

The catchword ‘green skills’ has been common parlance in policy circles for a while, even more 

since the Obama stimulus package committed substantial resources, as much as $90 billion, to 

training programs for ‘green jobs’. Yet in spite of a raging debate on the effectiveness of these 

actions, there is little systematic empirical research to guide public intervention for meeting the 

demand for skills that will be needed to operate and develop green technology.
1
 We argue that 

understanding the extent to which greening the economy can induce significant changes in the 

demand for certain skills and, most cogently, which skills these might be, is crucial to inform 

policy. More to the point, the benefits of tailoring training policy to the actual skill needs of the 

workforce holds the promise of mitigating the negative employment effects that are traditionally 

associated to environmental regulation (e.g. Becker and Henderson, 2000; Greenstone, 2002). This, 

however, requires prior identification of the skills that are complementary to green technology and 

organizational practices. 

The present paper addresses this issue by elaborating a two-step data-driven methodology. First, 

using the occupation-specific information of the Occupational Information Network (O*NET), we 

identify a set of skills that are used more intensively in green occupations relative to non-green 

ones. Our data-driven measures build upon prior work on changes in the demand for skills due to 

structural shocks such as technology (Goldin and Katz, 1998; Autor, Levy and Murnarne, 2003) and 

trade (Lu and Ng, 2013). Second, we use these Green Skills constructs to assess the effect of 

environmental regulation (ER henceforth), proxied by emission levels, on the demand for skills. In 

particular, we use variations in employment shares across states, sectors and occupations to 

construct aggregate skill measures for each sector-state pair. In so doing, we identify the impact of 

ER on green skills using environmental enforcement activities as instrument to address potential 

endogeneity of regulation under the assumption that enforcement decisions affect the demand for 

green skills only through emission reductions (Carrion-Flores and Innes, 2010). 

This study contributes to the literature in three ways. First, it complements quantitative assessments 

of the effect of ER on employment (e.g. Greenstone, 2002; Walker, 2013) by highlighting 

qualitative aspects of the composition of workforce skills. Secondly, it extends the remit of 

literature on the effect of structural shocks, such as trade and technology (e.g., Autor and Dorn, 

                                                           
1
 Further details on the Recovery Act at: http://www.whitehouse.gov/administration/eop/cea/factsheets-

reports/economic-impact-arra-4th-quarterly-report/section-4 For a review of studies on the effects of the package see: 

http://www.washingtonpost.com/blogs/wonkblog/post/did-the-stimulus-work-a-review-of-the-nine-best-studies-on-the-

subject/2011/08/16/gIQAThbibJ_blog.html. For an assessment of the specific part of the program devoted to green jobs 

see http://usatoday30.usatoday.com/news/washington/story/2012-01-30/obama-green-jobs-program-failure/52895630/1 

http://www.whitehouse.gov/administration/eop/cea/factsheets-reports/economic-impact-arra-4th-quarterly-report/section-4
http://www.whitehouse.gov/administration/eop/cea/factsheets-reports/economic-impact-arra-4th-quarterly-report/section-4
http://www.washingtonpost.com/blogs/wonkblog/post/did-the-stimulus-work-a-review-of-the-nine-best-studies-on-the-subject/2011/08/16/gIQAThbibJ_blog.html
http://www.washingtonpost.com/blogs/wonkblog/post/did-the-stimulus-work-a-review-of-the-nine-best-studies-on-the-subject/2011/08/16/gIQAThbibJ_blog.html
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2013), on skill demand by focusing on the transition to a sustainable economy. At the same time, 

since structural shocks are likely to undermine the relevance of existing know-how and create the 

need for new specific competences, it is important to use suitable measures. Thus, third, our data-

driven methodology allows the identification of skills that are important for green occupations and 

that are amenable to comparison with the standard skill measures of Autor et al. (2003). 

The main findings of this paper are two. First, our profiling exercise identifies green skills as a set 

of competences related to the design, production, management and monitoring of technology. 

Second, we find that environmental regulation triggers technological and organizational changes 

that increase the demand of high-level analytical and technical skills. Furthermore, our analysis 

suggests that this is not just a compositional change in skill demand due to job losses in sectors 

highly exposed to trade and regulation. 

The remainder of the paper is organized as follows. Section 2 provides the conceptual framework 

on the relation between environmental regulation and green skills. Section 3 presents the 

methodology for the construction of green skills measures. Section 4 outlines the structure of the 

data and the empirical strategy, while section 5 presents the main results. Section 6 concludes. 

2 Conceptual Framework 

The analysis of the relation between environmental regulation and the demand for skills is still at an 

exploratory stage. By and large previous works focus mostly on the net employment effects of ER, 

and in the absence of suitable points of reference in the literature we draw insights from two areas 

of research on structural changes in employment that provide a simple conceptual framework to 

guide our analysis of the impact of ER on workforce skills.
2
 

The composition of employment has undergone significant structural changes over the last three 

decades, and one of the most widely recognized marks of this transformation is increasing job 

polarization, that is, higher demand for occupations at the top and at the bottom of the skill 

                                                           
2
 Empirical evidence on the labour market effects of environmental regulation contemplates a variety of outcomes. 

Some studies predict job losses driven by redistribution of workers among industries rather than net job loss economy-

wide (Arrow et al, 1996; Henderson, 1996; Greenstone, 2002), while others find negligible outcomes (e.g. Berman and 

Bui, 2001; Morgenstern et al, 2002; Cole and Elliott, 2007). Other studies on the US distinguish plant-level effects 

depending on the extent to which employment changes consist in higher layoff rates (job destruction) or decreasing 

hiring rates (job attrition). Walker (2011) finds that a significant portion of employment adjustments are due to 

increases in job destruction, and that this effect is stronger among newly regulated plants. Greenstone (2004) gauges the 

effects of the 1977 Amendments to the Clean Air Act (CAA) on industrial activity by drawing a comparison of within 

plant effects under the attainment and nonattainment regulation regimes and finds that the latter has a modest negative 

impact on employment. A more recent paper by Walker (2013) uses worker-level data from the US to estimate the costs 

associated to reallocation over time and across jobs due to the 1990 Amendments of the CAA. Again, the impact of 

environmental regulation is negative and the estimated loss of earnings per worker depends on the strength of the local 

labour market. Consistent with these findings, Mulatu et al. (2010) for European countries and Kahn and Mansur (2013) 

for US states find that Energy-intensive and polluting industries relocate in response to ER. 
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distribution relative to middle-skill occupations (e.g. Acemoglu and Autor, 2011). Answers to the 

question of what drives this phenomenon point to two, not mutually exclusive (Bloom et al. 2014), 

main determinants: technology and international trade. The seminal work of Autor, Levy and 

Murnarne (2003) (ALM henceforth) first proposed a heuristic occupational classification based on 

prior identification of salient task dimensions: ‘cognitive’ versus ‘manual’ jobs, and ‘routine’ versus 

‘non-routine’ jobs. This interpretative framework offers a persuasive explanation of the changes 

observed in the structure of employment during the 1990s in the US and, in particular, of the role of 

ICTs diffusion in triggering capital-labour substitution among occupations that consisted mostly of 

routine, viz. rule-based, tasks. Following the same logic, the complementarity between ICTs and 

non-routine analytical and interactive tasks was identified as a key driver of increased demand for 

high-skilled professionals (Goldin and Katz, 1998). More recently international trade has been 

pinpointed as another key driver of changes in the demand for skills. Ng and Lu (2013) find that 

import competition is a significant driver of worker displacement in US manufacturing and, in 

particular, that higher exposure to foreign competitors has induced a composition effect in favour of 

non-routine (cognitive and interactive) skills to the detriment of routine skills. Evidence by Autor et 

al (2013) indicates that international trade had negative employment effects among workers in 

routine jobs relative to other occupational categories. On the whole, the contraction of industries 

more exposed to trade has induced compositional changes and, thus, an overall improvement in the 

quality of the workforce. By analogy, since the most reliable estimates points to a negative 

employment effect of ER (Greenstone, 2002; Walker, 2011) we expect that environmental 

regulation triggers a re-composition in favour of high-level skills. 

It should be clear that the main advantage of the task-based model is that it accounts particularly 

well for changes in workforce skills induced by new technology, in particular the emergence of new 

work tasks and transformations in the task requirement of occupations. Such a framework is 

attractive for the goal of the present paper, namely identifying categories of competences that match 

the emerging green technology paradigm and analysing the effects of an inducement factor like ER. 

It is worth recalling that innovations tend to originate in specific contexts and, accordingly, to draw 

on particular bodies of know-how that carry unique peculiarities of the problem-solving process that 

guides the identification of critical problems and the search for novel solutions (Rosenberg, 1976). 

For instance, ICTs belong to the well-known family of General-Purpose Technologies (GPTs), that 

is, a uniquely identified blend of machinery and know-how that can be employed across a wide 

variety of contexts (Bresnahan and Trajtenberg, 1995).
 
Having said this, even if technology is a 

crucial driver of emission reductions (Levinson, 2014), comparisons with other large-scale 

transitions should be made with caution for there is no obvious equivalent to a GPT in the remit of 
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environmental sustainability. A look at well-established taxonomies of environmentally sound 

technologies, such as the selection of environment-related IPC patent classes done in the WIPO 

Green Inventory
3
 or the ENV-Tech Indicator

4
 of the OECD for example, confirms significant 

heterogeneity across technologies that are closely tailored to the specific needs of the user 

industries. At the moment ‘green technology’ is a broad-encompassing label for a variety of sector-

specific responses rather than a standardized technology like ICTs in the context of 

computerization. This calls for caution also in uncritically adopting skill measures that were devised 

for the study of ICTs and trade, and indeed Section 3 will illustrate a data-driven methodology to 

identify the skills that are most relevant to environmental issues. With this caveat in mind, we think 

that prior experiences of large-scale transitions can still offer useful insights to guide our 

expectations for the empirical analysis. 

Recent work shows that the demand for high-level skills due to ICT adoption has decelerated over 

the last decade possibly because the technology has entered a mature stage of the life-cycle (e.g. 

Beaudry et al., 2013). This is consistent with theoretical literature showing that at the onset of a new 

wave of technological change the demand for new skills initially surges and subsequently dissipates 

inasmuch as codification and standardization facilitate the diffusion of new best practices and of the 

attendant skills (Aghion et al, 2002; Vona and Consoli, 2014). By analogy since green technology is 

still at early stages we expect that their adoption will be associated with an increase in the demand 

of highly skilled workers. Descriptive plant-level evidence by Becker and Shadbegian (2009) shows 

that for a given level of output and factor usage, plants producing green goods and services employ 

a lower share of production workers, which lends support to the working hypothesis that green 

technologies are skill-biased. Another broad similarity with recent large-scale transitions concerns 

the prominence of organizational changes that enabled significantly the adoption of both 

information (Bresnahan, Brynjolfsson and Hitt, 2002) and environmental technology (Gillingham 

and Palmer, 2014). With regards to the latter, a wealth of empirical studies highlights positive 

effects due to adoption of managerial practices and adaptation of organizational structures aimed at 

improving both environmental and economic performance.
5
 On the other hand some works pinpoint 

organizational and human capital factors acting as significant barriers that prevent the adoption of 

profitable energy-saving investments (De Canio, 1998; Sorrell et al, 2011). More in general, the 

literature on skill-biased organizational change finds a strong complementarity between certain 

                                                           
3
 http://www.wipo.int/classifications/ipc/en/est/ 

4
 http://www.oecd.org/env/consumption-innovation/indicator.htm 

5
 Martin et al (2012) find that energy managers have a positive impact on climate friendly innovation. Similarly, 

Hottenrott and Rexshouser (2013) report productivity improvements due to complementarity between the 

implementation of organizational practices and environmental technology adoption. Also Boyd and Curtis (2014) show 

that policies aimed at improving generic management practice trigger positive spillovers on firms’ productivity. 
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organizational practices and workforce skills (Caroli and van Reenen, 2001). These considerations 

suggest that technology adoption may not be the sole inducement channel through which firms 

respond to ER (see Jaffe et al, 2002). To identify a suitable empirical indicator that captures the 

effects of both technological and organizational change in this context, in section 4 we consider 

environmental regulation rather than a direct measure of green technology adoption since this is 

expected to proxy all changes affecting both firm’s environmental performance and the demand for 

skills. 

Summing up, the scarcity of literature on the relation between environmental regulation and the 

skill content of occupations limits the formulation of hypotheses. It is however possible to draw 

useful insights from other strands of research. The literatures outlined above suggest that since ER 

induces adoption of green technology and organizational practices and, since these technologies are 

still in an early phase of the life-cycle, regulation is expected to have stronger effects for high-

skilled workers. This should be reinforced by compositional changes following ER. Clearly, 

insights drawn from laterally relevant literature can shape our expectations only to a limited extent, 

and a more precise delineation of the framework elaborated here requires an empirical investigation 

of the main hypotheses and concepts at hand. Let us begin with the identification of green skills. 

3 Identification and Measurement of Green Skills 

This section is organized in three parts. The first offers a critical review of previous and current 

work on green occupations and green skills. The second subsection details a novel data-driven 

methodology for identifying the core green skills within the US workforce. In the last part we 

propose a conceptual and empirical validation of our findings. 

3.1 Green Jobs vs. Green Skills 

In spite of much interest on green skills there is, to the best of our knowledge, no standard definition 

for such a concept. Policy reports and an admittedly scant literature often conflate green skills with 

‘green jobs’, namely the workforce of industries that produce environmentally friendly products and 

services (see e.g. US Department of Commerce, 2010; Deitche, 2010). A look at ongoing work by 

national statistical agencies corroborates this view. In 2010 the US Bureau of Labor Statistics (BLS) 

launched the Green Jobs Initiative, a scheme aimed at gathering information on the scale, the trends 

as well as the industrial, occupational, and geographic distributions of green jobs. Drawing on 

multiple sources, the BLS circulates a mail survey, the Green Goods and Services, among a sample 

of establishments identified as potentially producing such products and services on the basis on 

their NAICS classification. Under this approach, the criteria for capturing green jobs are two, 
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namely the output approach (“jobs in businesses that produce goods or provide services that benefit 

the environment or conserve natural resources”) or the process approach (“jobs in which workers’ 

duties involve making their establishment's production processes more environmentally friendly or 

use fewer natural resources”).
6 

Although this evidence indicates that green employment in 2011 was 

just 2.4% of the total US workforce (Deschenes, 2013), several projections forecast significant 

growth in green employment over the next two decades (UNEP, 2008; UNEP, 2012).
 7

 Arguably, 

however, these estimates are rather sensitive to where the boundaries of the green economy lie and 

to what assumption are made regarding its expansion (Deschenes, 2013). In addition, such an 

approach ignores the heterogeneous nature of know-how and the ways in which it feeds into human 

labour that were elucidated by task-based model (e.g. ALM). 

Another suitable resource is the ‘Green Economy’ program developed by the Occupational 

Information Network (O*NET) under the auspices of the US Department of Labor. The core of 

O*NET is a rich database containing occupation-specific information on skill occupational 

requirements and tasks performed on the job since the early 2000. Therein data encompass multiple 

aspects of human labour, namely information on tasks performed on the job, on minimal education 

and experience requirements for each occupation and on characteristics of the attending work 

context. These categories are organized in detailed descriptors to which expert evaluators and job 

incumbents assign quantitative ratings on the basis of questionnaire data on a representative sample 

of US firms. The Green Economy program of O*NET is of interest for the present paper because it 

facilitates the identification of the skill content of green jobs. These are classified in three groups: 

(i) existing occupations that are expected to be highly in demand due to the greening of the 

economy; (ii) occupations that are expected to undergo significant changes in task content due to 

the greening of the economy (green-enhanced, henceforth GE); and (iii) new occupations in the 

green economy (new & emerging, henceforth NE) (see Dierdoff et al, 2009; 2011). Arguably, the 

involvement with environmental activities is more clearly identifiable in the last two groups 

compared to the first one, which can be considered at best indirectly ‘green’. At the same time 

while acknowledging the intrinsic value of green job classification of O*NET, we find that this 

classification may be too coarse and misleading even for the greener occupations within the NE and 

GE groups. Indeed the descriptions of some items within the O*NET catalogue of green 

occupations raises questions concerning the use of the ‘full green’ attribute for, among others, 

Chemical Engineers, Electric Engineers, Financial Analysis, Rail-track Operators or Metal Sheet 

                                                           
6
 http://www.bls.gov/green/home.htm (Last access: 28 February, 2015) 

7
 A recent study on the US by Elliot and Lindley (2014) finds that the within industry correlation between productivity 

growth and intensity of green employment is negative and, also, that fast-growing industries featured overall lower 

intensity of production of green goods and services. 

http://www.bls.gov/green/home.htm
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Workers. Rather than the entire skill set of these and other GE and NE occupations being ‘green’, 

we observe that only a fraction can be realistically thought of as attuned to environmental purposes.  

3.2 A methodology for the identification of Green Skills 

Fortunately O*NET allows for a finer distinction between green and non-green tasks, at least for a 

sub-set of tasks that are occupation-specific. Thereby, consistent with standard human capital theory 

(Becker, 1975), O*NET provides information on ‘general’ tasks, which are common to all 

occupations, and tasks that are instead specific to each occupation. Different from general tasks, 

whose importance for any given occupation is defined on a continuous scale, specific tasks are a 

binary characteristic. The Green Task Development Project of O*NET enriches this distinction for 

‘New & Emerging’ and ‘Green-Enhanced’ occupations by partitioning the set of specific tasks into 

green and non-green. By way of example, Metal Sheet Workers perform both green tasks, such as 

constructing ducts for high efficiency heating systems or components for wind turbines, and non-

green tasks, such as developing patterns using computerized metalworking equipment. Similarly, 

electrical engineers can plan layout of electric power generating plants or distribution lines and, at 

the same time, can design electrical components that minimize energy requirements. 

Using the distinction between green and non-green specific tasks, a first intuitive measure of skill 

Greenness is the ratio between the number of green specific tasks and the total number of specific 

tasks performed by an occupation k: 

 

 𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑘 =
#𝑔𝑟𝑒𝑒𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑡𝑎𝑠𝑘𝑠𝑘

#𝑡𝑜𝑡𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑡𝑎𝑠𝑘𝑠𝑘
.  (1) 

 

Bearing in mind that the share of green specific tasks over the total number of specific tasks varies 

considerably within both GE and NE occupations, this indicator can be interpreted as a proxy of the 

time spent by an occupation in a particular class of job tasks related, more or less directly, with 

environmental sustainability. The Greenness ratio allows an arguably finer distinction between 

types of green job compared to the O*NET definition. Indeed, the indicator represents pretty well 

the greenness of an occupation as shown by examples in Table 1.
8
 As expected, occupations like 

Environmental Engineers, Solar Photovoltaic Installers or Biomass Plant Technicians have the 

highest Greenness score by virtue of the specificities of their job content to environmental activities. 

Occupations that exhibit complementarity with environmental activities but, also, with an ample 

spectrum of non-green tasks have an intermediate score, for example Electrical Engineers, Metal 

                                                           
8
 The full list of green occupations and their greenness is reported in Table 2. 
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Sheet Workers or Roofers. At the bottom end of the greenness scale are occupations whose main 

activity occasionally involves the execution of environmental tasks but that cannot be considered 

full-fledged green jobs, such as traditional Engineering occupations, Marketing Managers or 

Construction Workers. 

 

[Table 1 and Table 2 about here] 

 

At the same time we acknowledge that using the Greenness indicator as a pure measure of skills 

carries limitations to the effect of formulating policy recommendations. First, rather than giving 

information on the exact types of skills associated with green jobs, the indicator provides no more 

than a synthetic measure of the importance of green task within an occupation. Second, an indicator 

based on specific tasks is by definition not suitable to compare the skill profiles of green and non-

green occupations and, thus, to understand which non-green skills can be successfully transferred to 

green activities and which green skills should be targeted by educational programs. But such a 

comparison is essential to estimate the cost of training programs considering that workers’ 

relocation from brown to green jobs depends on the extent to which skills are portable and can be 

reused in expanding jobs (e.g. Poletaev and Robinson, 2008). To overcome these limitations and 

broaden the policy relevance of our study, we use the greenness indicator as a search criterion to 

create a Green General Skills index (GGS). The identification is based on measures of general tasks 

retrieved from the release 17.0 (July 2012) of the O*NET database. Importance scores for 108 

general skills and tasks are reported for 912 SOC 8-digit occupations.
9
 In particular, we propose a 

two-step procedure. First, we regress the importance score
10

 of each general task (or skill) l in 

occupation k on our greenness indicator plus a set of four-digit occupational dummies: 

 

 𝑇𝑎𝑠𝑘_𝐼𝑚𝑝𝑘
𝑙 = 𝛼 + 𝛽𝑙 × 𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑘 + 𝐷𝑘

𝑆𝑂𝐶_3𝑑𝑖𝑔𝑖𝑡
+ 𝜀𝑘, (2) 

 

where these regressions are weighted by the employment of the occupation. Occupational dummies 

(𝐷𝑘
𝑆𝑂𝐶_3𝑑𝑖𝑔𝑖𝑡

) are included to allow the comparability of the skill profiles of similar occupations. In 

                                                           
9
 We focus on ‘Knowledge’ (32 items), ‘Work activities’ (41 items) and ‘Skills’ (35 items), while we exclude ‘Work 

context’ (57 items) because the items in it contained concern the characteristics of the workplace rather than actual 

know-how applied in the workplace. O*NET data have been matched with BLS data using the 2010 SOC code. Details 

are available in the Appendix B. 
10

 Importance scores in O*NET vary between 1 (low importance) and 5 (high importance). We have rescaled the score 

to vary between 0 (low importance) and 1 (high importance). 
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addition, we use only three digit SOC occupations containing at least one item with positive 

greenness, thus eliminating occupations that bear no relevance on sustainability, such as Personal 

Care and Service (see Table 3).
11

 Here, a positive (negative) and significant 𝛽𝑙 denotes that task l is 

used more (less) intensively in greener occupations. Subsequently we assign the green label to the 

general task item l when the estimated 𝛽̂𝑙 is statistically significant at 99%. To illustrate, a 

coefficient of 0.2 implies a 20% difference in importance of task l in occupation k that has 

greenness equal to 1 as opposed to similar occupations with greenness equal to zero. The second 

step is grouping these items into coherent macro-groups using principal component analysis (PCA) 

and keeping only the selected green general tasks that load into principal components with 

eigenvalue greater than 1.
12

 We use PCA only to cluster items into coherent macro-groups and build 

our final General Green Skill (GGSk) skill index for each occupation k by taking the simple average 

of the importance scores of each O*NET item belonging to a given macro-group. For instance, for 

the macro-group Science, the GGSk index is computed as the simple average between the 

importance score of ‘Biology’ and the importance score of ‘Physics’ (see Table 4). 

As shown in Table 3, occupations with positive Greenness tend to be concentrated in macro-

occupational groups (2-digit SOC) that are intensive in abstract skills e.g. Management, Business 

and Financial Operations, Architects and Engineers and Life, Physical, and Social Scientists. The 

polarization of green occupations in these high-level occupational groups explains in part the 

prevalence of high skills in our selection of GGS. This finding is consistent with previous research 

showing that new occupations such as several green ones are relatively more complex and exposed 

to new technologies than existing occupations (Lin, 2011). Thereby our strategy yields four macro-

groups of Green General Skills that are high skilled, and are summarized in the first panel of Table 

4.
13

 In the next sub-section we will describe and validate these constructs in detail. 

 

[Table 3 and Table 4 about here] 
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 The Greenness of an occupation is positive for ‘Green-Enhanced’ and ‘New & Emerging’ green occupations. The 

polarization of green occupations in ‘high-skill’ macro occupational groups partly explains the prevalence of high skills 

in our selection of green skills.  
12

 In fact, we chose a slightly lower cut-off of 0.98 to include the GSS Science. Science appear together with 

engineering a core GGS when using more demanding selection criteria. In Appendix A we present further robustness 

exercises with different approaches to select our set of green general skills. 
13 

The fifth group would only include Geography. We therefore excluded it from the main analysis due to the too 

narrow definition of this last component. Baseline results for Geography (and for all single items) are reported in Table 

23 in the Appendix D. 
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3.3 Preliminary validation 

This section is devoted to commenting on and assessing the empirical constructs outlined in Table 

4. For the goal of grounding our GGSk index within the existing literature, in the absence of suitable 

scholarly work specifically focussed on green skills, we take as our main conceptual reference the 

wealth of empirical evidence elaborated in the context of policy reports produced by various 

international organizations. At the same time, we find it useful to explore commonalities with 

standard skill measures developed by the literature on routinization. 

The first Green General Skills group, Engineering & Technical Skills, emerges consistently from 

several policy reports on Green jobs, especially for green building construction and wind turbine 

installations (Ecorys, 2008; UKCES, 2010). These hard skills encompass competences involved 

with the design, construction and assessment of technology usually mastered by engineers and 

technicians. Engineering skills are also an essential input for energy-saving R&D projects and 

programs aimed at reducing the environmental impacts of production activities. 

The second item, Science skills, is directly related to the first since it also encompasses competences 

stemming from bodies of knowledge broad in scope and essential to innovation activities, for 

example Physics and Biology. According to a Cedefop (2009) study, this category of skills is 

especially in high demand at early stages of the value chains and in the utility sector. Although 

scientific and engineering knowledge can be highly transferable across domains of use, not all 

occupations that score high in these skills have high specific knowledge applicable to 

environmental issues. For instance, the occupations with high importance scores in this Green 

General Skill group are Environmental Scientists, Materials Scientists and Hydrologists, all having 

clear direct applications to environmental problems, as well as Biochemists, Biophysicists and 

Biologist, which instead are more general-purpose occupations (Rosenberg, 1998). Similar 

examples can be made for engineering professions, e.g. environmental engineers vs. civil engineers. 

The third GGS set, Operation Management skills, includes know-how related to change in 

organizational structure required to support green activities and an integrated view of the firm 

through life-cycle management, lean production and cooperation with external actors, including 

customers. These skills have been observed to be relevant in two domains of influence (UNEP, 

2007; Cedefop, 2009). The first involves the capacity to use and disclose information on products’ 

and processes’ characteristics that are relevant for the environment, such as energy-saving and 

emission accounting. Examples of professions intensive in these skills are related to the integration 

of green knowledge into organizational practices, i.e., sales engineers, climate change analysts and 

sustainability specialists. The second relates to adaptive management, that is, the capacity to 
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identify environmental needs and to stir the dialogue across different stakeholders’ groups, as is the 

case for Chief Sustainability Officers, supply chain managers and Chief sustainability officers 

Transportation Planners. 

The fourth macro group, Monitoring skills, concerns technical and legal aspects of business 

activities that are fundamentally different way from the remit of Engineering or of Science. Rather 

than being directly involved in the design of new products and production methods, these skills are 

employed when assessing the observance of technical criteria and legal standards, i.e. regulatory 

requirements. The key occupations in this remit are Environmental Compliance Inspectors, Nuclear 

Monitoring Technicians, Government Property Inspectors, Emergency Management Directors and 

Legal Assistants. The prominence of technical monitoring competences is documented in several 

policy reports, while the capacity of understanding the new environmental laws and regulations is 

key for firms operating in polluting sectors (UNEP, 2008; OECD/Cedefop, 2014).  

A comparison of our green skills constructs with Autor and Dorn’s (2013) Routine Task Intensity 

(RTI henceforth) index is useful to assess the extent to which work tasks can be replaced by 

computer capital. Such an index is computed as the difference between routine task scores –manual 

(RM) and cognitive (RC) – and non-routine task scores –interactive (NRI) and abstract (NRA), see 

Table 4.
14

 The index increases together with the importance of routine tasks in each occupation, and 

declines the higher the importance of interactive and abstract tasks. 

 

[Table 5 about here] 

 

Against the backdrop of the conceptual validation outlined above, Table 5 presents some descriptive 

evidence of our GGSk constructs. First, we observe that the employment share of green occupations 

is 11% in aggregate. Therein occupations with a low Greenness score (between 0 and 0.25) hold the 

lion share (8%) followed by Medium- and High-Greenness intensity with similar shares (1.5% and 

1.8%, respectively). Interestingly the share of green employment weighted by the time spent in 

green activities (i.e. the greenness indicator) is 2.8%, which is rather close to the estimate reported 

by Deschens (2013) using the abovementioned approach based on the Green Good and Service 

survey. Further, as expected the scores of our GGSk constructs among Green occupations are 

systematically higher than for Non-Green occupations (middle part of Table 5). Looking at 

                                                           
14

 The index is defined as 𝑅𝑇𝐼 = log(𝑅𝑀 + 𝑅𝐶) − log (𝑁𝑅𝐴 + 𝑁𝑅𝐼), with the single components (RM, RC, NRA and 

NRI) initially normalized to range between zero and five. We use the O*NET items proposed by Acemoglu and Autor 

(2011) to build these task constructs. Differently from previous works, we do not include non-routine manual task 

construct in the index because it displays a very high correlation with our routine manual task construct. 
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individual constructs, the gap is higher for Engineering skills across all occupations (more than 

100%) and for Science and Operation Management among Medium- and High-Greenness 

occupations. Monitoring is the exception in that the gap with non-green occupations is rather 

homogeneous across occupations with varying degree of Greenness. Thus, the gap between Green 

and Non-Green occupations emerges as more pronounced for high-level skills.  

Descriptive evidence in Table 5 corroborates our earlier remark that Green Occupations are less 

routine intensive than non-green ones, particularly so Medium-Green and High-Green. Lastly, when 

grafted onto a standard measure of human capital such as the required years of on-the-job training 

(O*NET), the bottom part of Table 5 suggests that only Medium-Green occupations have a 

significantly higher score than both Non-Green and High-Green occupations.  

 

[Table 6 about here] 

 

Table 6 indicates higher correlation of the greenness index with Engineering and Science skills 

compared to Monitoring and Operation Management skills. This is consistent with the robustness 

analysis showing that these hard skills are the true core green skills (see Appendix B). The 

coefficients reveal the highest correlations between Operation Management-Monitoring skills 

followed by Science-Engineering skills. While the latter reflects the mutual relevance of high-level 

scientific and technical skills, the former suggests strong complementarity between technical, 

organizational and legal competences involved in strategies to deal with environmental issues. The 

second part of Table 6 shows the correlations between our green skills measures and the 

routinization measures. Operation Management skills exhibit a marked non-routine character 

because they entail dealing with work environments that demand situational adaptability and 

communication, general and problem solving skills required by ICT technologies. Engineering and 

Science exhibit as expected a high positive correlation with NRA since they are all complex 

cognitive competences to allow the identification of problems and the design of problem-solving 

strategies. However, it is worth noting that the correlations of NRA with Science and Engineering 

are significantly lower than the one with Operation Management, and that engineering and technical 

has a higher correlation with routine manual takss than NRA tasks.
15

 

Summing up, this section 3 has proposed a data-driven methodology for the identification of green 

skills based on occupation-specific data on the US workforce. The four core competences that 

                                                           
15

 The low correlation between NRA and Engineering & Technical and Science skills may be due to the fact that NRA 

is particularly important for Computer and Mathematical occupations (SOC code 15) for which no green occupation is 

observed. 
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emerge from this exercise are for the most part high-level analytical and technical skills markedly 

related to the design, production, management and monitoring of technology. In the next section 

these constructs will be put to assess the effects of environmental regulation on the demand for 

green skills. 

4 Testing the relationship between Environmental Regulation and Green Skills 

This section describes the data and the methodology used to validate our green skills measures. We 

propose a simple empirical strategy to disentangle the impact of a more stringent environmental 

regulation on the demand of Green Skills. 

4.1 Data 

Our analysis of the effect of ER on workforce skills is at the sector-by-state level. This level of 

regional aggregation is the most appropriate to preserve fine-grained information of the workforce 

skills at 4-digit NAICS industry level. Since the scale of green jobs and skills is still relatively small 

in US employment, preserving the maximum level of sectoral and occupation details is necessary 

for a correct measure of our variables of interest. This comes at the cost of not being able to exploit 

the time dimension in the data because detailed information on the distribution of the workforce by 

occupation, industry and state is only available for the years 2012 and 2013. 

Our primary dependent variables are the four measures of GGSk plus the greenness indicator built 

by weighting occupational skill measures by employment using the 2012 BLS ‘Occupational 

Employment Statistics (OES) Research Estimates by State and Industry’. These data provide 

information on the number of employees by occupation (SOC 2010 6-digit), industry (4-digit 

NAICS) and state. We limit our analysis to industries effectively exposed to environmental 

regulation: utilities, manufacturing and construction.
16

 We aggregate these average values of green 

skills for each 6-digit occupation, k, to compute the following index by industry i and state j as 

follows: 

 

 𝐺𝐺𝑆𝑖𝑗 = ∑ 𝐺𝐺𝑆𝑘𝑘 ×
𝐿𝑘𝑖𝑗

𝐿𝑖𝑗
.  (3) 

 

Here 𝐿𝑘𝑖𝑗 represents the employment in occupation k, industry j and state i, while 𝐿𝑖𝑗 is the 

employment in sector j and state i. Recall that GGSk measures are normalized to vary between 0 and 

                                                           
16

 Taken together these three sectors account for more than 90% of air emissions from point sources for all the 

pollutants that we consider in our empirical analysis. 
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1. Note that differences in our measures across industries and states depend exclusively on 

differences in the composition of the labour force (share of employees in occupation k in industry i 

and state j) whereas the green skills content of occupations (GGSk) is defined at the occupational 

level and so it is not state-specific. Likewise, we can use equation (3) to construct sector-state skill 

measures based on the Greenness indicator, the routine intensity index or standard human capital 

measures such as training. When using the share of green specific skills as proxy of green skills, the 

effect should be taken with caution because this variable was constructed under the assumptions 

concerning the distribution of employment within 8-digit SOC category. Further details on the 

database construction are contained in the data Appendix B.  

Our main explanatory variable is stringency of environmental regulation at the state-by-sector level 

proxied by air emission intensity of toxic substances and pollutants covered by the Clean Air Act 

(CAA), the most important federal piece of legislation aimed at reducing air pollution 

concentrations in the US.
17

 Accordingly, our favourite regulatory measures are emissions of the six 

criteria pollutants identified by the EPA and subject to the CAA.
18

 First introduced in the 1963, the 

CAA has been amended several times, the last major amendment dating back to 1990. The 

legislation sets county-specific attainment standards on concentration of pollutants and hazardous 

substances (NAAQS and NESHAPS, respectively).
19

 Counties that fail to meet concentration levels 

for one or more substances (toxic substances or one or more of the six criteria pollutants) are 

designated as nonattainment areas, and the corresponding states are required to put in place 

implementation plans to meet federal concentration standards within 5 years.
20

 Emissions of 

Criteria Pollutants by plant are collected once every three years into the National Emission 

Inventory (NEI) developed by the EPA, which contains detailed geographical and sectoral 

information to assign emission to 4-digit NAICS industry in each state. However, since obligation 

to report for point sources depends on a series of minimum emission thresholds for each specific 

pollutant, several sector-state pairs are characterized by zero emissions (36.4% of the total state-

industry pairs that account for 31.5% of employment in 2012).  

                                                           
17

 Brunel and Levinson (2015) review various approaches to proxy the stringency of environmental regulation and 

conclude that when the sectoral breakdown is sufficiently narrow emissions are the best proxies of environmental 

regulatory stringency because they reflect, by means of a continuous measure, the actual enforcement of regulation 

rather than purely legislative acts. 
18

 Ozone-formation (sum of nitrogen oxides – NOx – and volatile organic compounds – VOC), particulate matter (PM) 

smaller than 2.5 micron, carbon monoxide, nitrogen oxides (NOx), sulphur dioxide (SO2) and lead. In the appendix, we 

show also results for the emissions of toxic substances retrieved from the Toxic Release Inventory (TRI) developed by 

the Environmental Protection Agency (EPA), a proxy of regulation used by related study of Carrion-Flores and Innes 

(2010). 
19

 National Ambient Air Quality Standards (NAAQS) set maximum levels of concentration for the six criteria pollutants 

and National Emissions Standards for Hazardous Air Pollutants (NESHAP) set maximum levels of concentration of 

hazardous air pollutants. 
20

 States may use a variety of policy tools to comply with concentration standards, such as creating a system of pollution 

permits or mandating the adoption of specific technologies.  
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The main advantage of using emissions as a proxy for ER is that they capture particularly well 

within-sector changes affecting the workforce composition particularly well. Indeed, a recent paper 

by Levinson (2015) shows that around 90% of emission abatement is due to technical improvement 

within the sector, which in turn can stem from the direct adoption of emission abatement 

technologies and environmentally-friendly organizational practices. 

 

[Table 7 about here] 

 

Table 7 shows basic descriptive evidence for the skill and regulatory measures by 3-digit NAICS 

industry. Briefly notice that the sectors where the share of engineering and science skills is highest 

are construction (NAICS 23) and Utilities (NAICS 22) respectively. These two sectors are exactly 

those indicated by the policy reports discussed in Section 3. In turn, Operation Management skills 

are higher in Oil and Gas extraction (NAICS 211), Utilities (NAICS 22) and Petroleum and Coal 

Products Manufacturing (NAICS 324) while Monitoring skills are most important in Utilities 

(NAICS 22) and Petroleum and Coal Products Manufacturing (NAICS 324). The Utilities sector, 

which includes the power generation sector, exhibits the greatest concentration of all categories of 

green skills as well as the highest level of emission intensity. This is closely followed by the 

Petroleum and Coal Products Manufacturing (NAICS 324), which is also a large employer of green 

skills intensive occupations. As expected, GGS are particularly important in few very emission 

intensive sectors. 

4.2 Estimating equation 

To explore the relationship between environmental regulation and green skills, we estimate the 

following equation for each of our four GGSij indices: 

 

 𝐺𝐺𝑆𝑖𝑗 = 𝛽𝐸𝑅𝑖𝑗 + 𝜸𝐗ij + 𝑑𝑖 + 𝑑𝑗 + εij. (4) 

 

where i indexes sector and j indexes states; 𝑑𝑗 are state effects absorbing unobservable factors that 

affect both skill demand and ER, such as the demand for sustainable products; 𝑑𝑖 are three-digit 

NAICS industry dummies that intend to capture unobservable sectorial characteristics potentially 

affecting the demand of skills, i.e. technology; 𝐗𝑖𝑗 is a set of controls varying at the sector-by-state 

level; 𝜀𝑖𝑗 is a conventional error term. Since our dependent variables adjust slowly to structural 

shocks, all explanatory variables are lagged by one or more years. In particular, environmental 
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regulation (𝐸𝑅𝑖𝑗) is measured as: log(1 + 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑗;2002−2011) − log(1 +

𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖𝑗;2011).
21

 We compute weighted average of emissions over the years 2002, 2005, 

2008 and 2011 (see Appendix B), giving more weights to more recent years o account, at least in 

part, for regulatory stringency in the recent past.
 
In addition, we use the logarithm to mitigate the 

influence of outliers in emissions, while expressing ER in per-employee terms to depurate the effect 

of sector size within the state.
22

 For comparison, we also estimate versions of equation (4) that use 

other common measures of skills used in the literature, including the importance of routine and non-

routine tasks and the years of training required. Further details on the data sources and the 

measurement of the variables included in the econometric analysis are given in the Appendix B. 

The set of state-by-industry controls is included to separate the estimated effect of ER on workforce 

skills from structural factors likely to affect both variables. First, we include the log of the average 

plant size in year 2011 (employees per establishment, BLS), which is likely to be positively 

correlated with both environmental regulation (Becker and Henderson, 2000; Becker et al, 2013) 

and the employment share of high skilled workers such as engineers or scientists (Doms et al, 1997; 

Berman and Bui, 2001). Second, we include the 10-years log change in the level of employment to 

make sure that the observed relationship between environmental regulation and workforce 

composition is not driven by compositional effects. For example, workforce skills may be higher 

simply because under-performing firms relocate in countries or states with milder regulations and 

thus overall employment declines. Third, we include the log of the number of monitored facilities to 

control for the extent to which industrial and other mobile sources not included in the National 

Emission Inventory contribute to local emissions and consequently to the local concentration of 

toxic substances. States and industries with larger point sources are more easily targeted by 

emissions standards as opposed to those with more diffuse emission sources. 

 

[Table 8 about here] 

 

Table 8 shows that industry-by-state controls tend to be highly correlated with our measures of ER 

and hence should be included. In line with previous evidence (Becker and Henderson, 2000; Becker 

et al., 2013), the average size of a plant is significantly larger in sectors with higher emissions, 

                                                           
21

 Due to the absence of data on value added by 4-digit NAICS and state, we cannot follow the approach proposed by 

Brunel and Levinson (2013) based on scaling emissions by the economic value created by the sector. Our imperfect 

proxy of value is therefore total employment. 
22

 It is worth remarking that these assumptions have no qualitative effects on our results, which remain qualitatively 

unchanged if, for instance, we allow the log in the number of employees to have an autonomous effect on the skill 

composition. 
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while emissions per employee tend to be higher where more plants are subject to monitoring. Quite 

surprisingly, the sign of the correlation between different types of emissions and the past 10-years 

change in employment is negative but close to zero. Finally, polluting sectors tend to be slightly 

more exposed to import penetration. Since import penetration is a significant driver of changes in 

workforce skills, the interaction of ER and import shocks will be investigated in greater detail in 

what follows. 

Two final remarks are in order. First, using state-level data may appear a limitation compared to 

recent studies using exogenous change in county level attainment status in terms of ER as research 

design (Walker, 2011; 2013). However, county-level data do not contain the fine-grained 

occupational and sector details essential to distil all the possible information on a relatively small 

phenomenon such as green employment. Second, the effect of ER is identified within 3-digit 

sectors, thus it may be driven by sectoral differences across 4-digit sectors in each three digit block. 

We opted for the 3-digit sector specification with dummies to capture the effect of import 

penetration and of its interaction with ER. At the same time, as shown in Section 5, results are 

unaffected in a specification with 4-digit sector dummies.  

4.3 Endogeneity 

A causal interpretation of the estimated coefficient of ER in Equation 3 should rest on the 

assumption that, conditional to the set of controls, the correlation between ER and the error term is 

zero.
23

 This assumption is likely to be violated in our empirical framework for at least two reasons. 

First, even in the favourite specification with three-digit industry dummies, sectors with a higher 

share of green workforce may be better equipped to reduce emission irrespective of the level of ER. 

Second, emissions are just a proxy of ER, which is likely to be affected by measurement errors. In 

particular, we cannot directly observe state policies in sector i, but only the effect of these policies 

on emissions. To comply with federal standards, which are based on local air concentrations of 

pollutants and toxic substances, states intervene by regulating point sources and other sources.
24

 

Moreover, air concentrations depend on other factors such as geographical features of the area and 

winds. However, the National Emission Inventory provides detailed information on industry and 

location of emissions only for point sources. The exclusion of non-point sources and the failure to 

account for other factors affecting emission concentrations create a gap between latent 
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 Controlling for the average plant size and the number of establishments monitored under the NEI, as we do, is clearly 

not enough to solve endogeneity problems because non-point sources and other local features affecting concentration of 

pollutants and hazardous substances can display huge variations within and between states. 
24

 As observed by Shapiro and Walker (2015), the intervention of states and local authorities to reduce emissions are not 

limited to non-attainment counties, that are forced to reduce their pollution concentration, but also on attainment 

counties that need to keep their emissions low in order to avoid the risk of passing the pollution concentration 

thresholds and become non-attainment counties. 
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environmental regulatory stringency and actual emission intensities of point sources that may 

generate measurement errors in our proxies. The latent level of environmental regulatory stringency 

enacted by states depends on the presence of nonattainment areas within the state and on the risk 

that attainment areas may switch to the status of nonattainment areas. 

Taken together these two sources of endogeneity make it difficult to predict the direction of gap 

between OLS and IV estimates. OLS are likely to underestimate the effect of ER in presence of 

measurement error but the direction of the omitted variable bias crucially depends on initial 

conditions which are hard to capture with cross sectional data. On the one hand, if green skills are 

essential to abate pollution, sectors that are initially better equipped with these skills have a 

comparative advantage in reducing emissions. On the other hand, stringent ER should 

disproportionally hit sectors that underperform in terms of emissions and lag behind in terms of 

technological competences required to reduce emissions, including green skills. Overall, 

endogeneity should be addressed to correctly identify the effect of ER on green skills, but it is 

difficult to make a reliable guess on the direction of the bias without resorting to panel data. 

To address these concerns, we use the instrument of Carrion-Flores and Innes (2010) to address 

endogeneity in the effect of ER. Recall that Carrion-Flores and Innes (2010) estimate the effect of 

ER, measured using emission levels, on adoption of green technologies at the sector level.
25

 The 

analogy with the present paper is that both technology and skills are complements in a hypothetical 

production, and thus emission, function. Thereby a successful empirical strategy should identify an 

instrument that is highly correlated with regulation but uncorrelated with skill or technology 

measures. Environmental enforcement activity is a valid candidate. On the one hand the instrument 

is likely to be a strong predictor of regulatory stringency given the support of a vast empirical 

literature showing that enforcement activities are a stimulus to abate emissions (Gray and Deily, 

1996; Magat and Viscusi, 1990; Decker and Pope, 2006; Gray and Shimshack, 2011). On the other 

hand the instrument is likely to be uncorrelated with our skill measure other than through their 

effect on regulation. For the case of patents, Carrion-Flores and Innes (2010) claim that with the 

exception of effects due to “effective” environmental standards (i.e. emission levels) enforcement 

activity does not affect the adoption of environmental technologies. A similar argument applies to 

green skills since, different from environmental patents, GGS are sets of competences of a general 

character and are not exclusively employed to improve environmental performance and abate 

emissions. 

                                                           
25

 In their setting, the main source of endogeneity is reverse causality going from innovation to environmental 

regulation.  
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Following on the above we account for endogeneity by instrumenting ER with the number of 

inspections and violations at sector-state level over the period 2000-2009 (Enforcement and 

Compliance History Online – ECHO, managed by the EPA, see Appendix B). Just as for the 

measure of ER, the instruments are expressed in per-employee terms (the Appendix C shows that 

the first-stage results corroborate our choice). We report in the regressions Tables that the excluded 

instruments display a partial F statistics well above the usual cut-off of 10 (Staiger and Stock, 

1997). This result is not surprisingly and confirms the one obtained by Carrion-Flores and Innes 

(2010) exploiting the time variation of the data rather than the state variation. The next section 

illustrates the main results and presents a series of robustness checks. 

5 Estimation Results 

This section provides evidence on the positive effect of stringent ER on the demand for green skills. 

Recall that a higher emission level implies a weaker regulation, thus we expect a negative 

coefficient of ER on green skills. The main results are reported in Table 9. The top panel presents 

results for our measures of green skills, including the overall greenness indicator of an industry 

(column 1), or four green general skill importance scores (columns 2-5), and an average count of 

green specific tasks (column 6). For comparison, the bottom panel of Table 9 includes regression 

results using several standard measures of skills proposed by previous literature.  

We focus on Instrumental Variable results only since endogeneity affects the reliability of OLS 

estimates of the effect of ER on workforce skills. As seen in the notes to Table 9, our instruments 

are strong, with a partial F-statistic for the excluded instruments of 112. Full first stages are reported 

in Table 24 the Appendix C. For the sake of space and since estimation results appear very similar 

across the six criteria pollutants, we report results for SO2 only and leave to Appendix C (Table 19 

and Table 20) the results for other pollutants, including those in the complementary pollution data 

contained in Toxic Release Inventory. We focus on SO2 emissions since they are the criteria 

pollutant experiencing the greatest reduction over the period 2002-2011, and because a revision of 

the NAAQS for SO2 occurred in 2010.
26

 

 

[Table 9 and Table 10 about here] 
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 SO2 emissions shrunk by about 54 percent over the period 2002-2011, the reduction for CO emissions was 9 percent, 

for NOx emissions was 46 percent, for ozone emissions was 41 percent and for PM2.5 emissions was 34 percent. As 

already discussed, no information about emissions of lead was available in the NEI before 2011. 
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Our most important finding is that a lower level of SO2 emissions per capita (and hence stricter 

environmental regulation) increases demand for each of our general green skills.
27

 To quantify the 

effect of environmental regulation on green skills, note that SO2 emissions decreased by more 50% 

between 2005 and 2011. In the absence of a clear target for criteria pollutant, we use this amount as 

a reasonable point of reference for the assessment of a long-term emissions reduction scenario. 

While the resulting magnitude appears quite small, since halving emissions would just increase the 

industry greenness by 0.002, note from Table 10 that the effective range of variation of our skill 

indicators is significantly smaller than the theoretical one (i.e. 0-1).
28

 The inter-quartile range (IQR) 

between the 25
th

 and 75
th

 percentile of our various green skills indicators ranges from 0.05 for the 

greenness indicator to 0.133 for engineering skills. Since our dependent variable is essentially the 

mean of a qualitative index, we use inter-quartile changes to gauge the effective magnitude of the 

influence of environmental regulation on green skills and find that a 50% decrease in emissions 

increase industry greenness by 4.2% of a full inter-quartile range. It is worth noting that this result 

is fully driven by a positive and large effect of ER on green specific tasks, which see an increase 

equivalent to 8.2% of the inter-quartile range, rather than on the average count of non-green specific 

tasks (see columns 6 in the top Panel and 1 in the bottom Panel). Interestingly, environmental 

regulation increases demand for both hard technical skills and organization management skills. The 

largest increase in demand for green general skills occurs for operations management and science. 

A 50 percent reduction in emissions increases the importance of operations management by 12.6 

percent of the inter-quartile range, and the importance of science skills by 9.5 percent of the inter-

quartile range. Operations management skills are important for coordinating different aspects of the 

production processes to achieve sustainability goals, such as technical information, strategic 

problem-solving and marketing strategies.  

Our results also indicate that the complexity of work increases with more stringent environmental 

regulation. The bottom Panel of Table 9 shows that more stringent ER increases demand for non-

routine skills relative to routine skills as illustrated by the effect on the Autor and Dorn’s (2013) 

Routine Task Intensity. This effect is the result of a positive effect of ER on the demand of non-

routine (NR) skills and a negative one on the demand of routine manual (RM) skills. A 50 percent 
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 It is also worth noting that the effect of ER is conditional to the average plant size and to the share of monitored 

plants. As expected and shown in the Tables, the latter variable has a positive and statistically significant effect on 

GGS. Results for these control variables are shown in Appendix C. 
28

 Throughout this section, we refer to a per-employee reduction in emissions, as used in the regressions. For ease of 

exposition, we omit the reference to per-employee in most cases. To calculate the emissions reductions, we compute the 

weighted average of emissions and employment for each sector/state observation, weighted by employment in 2012. 

We then calculate the change in our green skills indices from a given emissions abatement target e̅ are calculated as: 

 ∆𝐺𝐺𝑆𝑖𝑗 = 𝛽̂ × log (
𝑎𝑣𝑒𝐸𝑚𝑖𝑠+1

𝑎𝑣𝑒𝐸𝑚𝑝𝑙+1
) − log (

(1−𝑒̅)𝑎𝑣𝑒𝐸𝑚𝑖𝑠+1

𝑎𝑣𝑒𝐸𝑚𝑝𝑙+1
). 
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reduction in emissions increases the importance of NR skills, such as “thinking creatively”, by 

almost 7.1% of the inter-quartile range. In contrast, a 50 percent reduction in emissions reduces the 

importance of routine manual (RM) skills by 10.7 percent of the inter-quartile range. Notably, a 

more stringent ER does increase the demand of Routine Cognitive tasks, a category highly affected 

by the diffusion of information technologies and that experienced a considerable decline during the 

1980s and the 1990s particularly in clerical occupations of the service industry (e.g., Acemoglu and 

Autor, 2011). This result is explained by the relatively high importance of RC skills for technical 

occupations, especially in the nuclear power sector (i.e. Nuclear Equipment Operation Technicians), 

and thus tends to disappear when we consider manufacturing sectors only.
29

 Finally, the importance 

of training also increases as emissions fall, but the magnitude is small, with an elasticity of just -

0.05, i.e. only one and half week in response to a 50 percent emission reduction. 

In combination, these results support the conceptual framework outlined in Section 2, which 

suggests that, in the wake of a structural shock, firms rely on high-level competences to navigate the 

impending technological uncertainty. They are also consistent with previous literature on the effects 

of ICT technology on the task content of occupations, since skills associated with abstract reasoning 

and problem-solving are strong candidates for the successful implementation of technological and 

organizational changes necessary to deal with the opportunities and the challenges of emission 

abatement.  

 

[Table 11 about here] 

 

Table 11 shows that our results are generally robust to including 4-digit, rather than 3-digit, sector 

dummies with the exception of engineering skills and routine cognitive tasks. As expected, the 

magnitudes of the effects of ER on green general skills declines slightly when including 4-digit 

sector dummies. One exception is the effect of ER on engineering and technical skills, which is no 

longer statistically significant. However, the effect remains significant when considering only 

manufacturing, as seen in Table 21 and Table 22 in Appendix C. 

 

5.1 Environmental Regulation and the Decline in Manufacturing Employment 

To further explore the consequences of environmental regulation on the composition of 

employment, in this section we consider two additional specifications that allow us to frame our 

results in the broader picture of considerable decline in US manufacturing employment over the last 
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 Table 21 in the Appendix C shows results of our baseline specification when considering manufacturing sectors only. 
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two decades, which coincidences with the massive increase of China’s presence in international 

trade (Pierce and Schott, 2012; Acemoglu at al., 2014). This contraction in employment has recently 

been touted as a possible source of improvement in workforce quality. The argument is that, as 

unskilled-intensive processes are relocated to labour-abundant countries such as China, the 

remaining US firms offset price competition by increasing output quality which, in turn, requires 

high-level skills.
30

 By analogy, more stringent ER likely adds to the ongoing trade effect and 

induces further shrinking of high-emission sectors. However, it is a matter of debate whether the 

combination of high exposure to trade and regulatory shocks amplify the compositional effects 

found for trade by previous studies (e.g., Ng and Li, 2013).  

 

[Table 12 about here] 

 

First, we re-run our regressions while splitting our sample into expanding and contracting sectors in 

Table 12. If the bulk of the ER effect is concentrated in contracting sectors, the technical effect of 

needing new labour skills to reduce emissions would be fully dominated by the compositional effect 

of high polluting tasks moving to countries with weaker regulation and thus green technologies and 

management practices are not the true drivers of the observed shift in skill demand. Although as 

expected the effects of ER on our various green skills indicators are stronger in sectors where 

employment has decreased over the last 10-years, this effect remains positive and, with the 

exception of the overall Greenness index, statistically significant also in expanding sectors. 

Similarly, the bottom Panel of Table 12 shows that compositional effects influence the RTI index 

and the demand of NR tasks, but still do not completely cancel out the technical effect. 

Our second additional specification adds import penetration, a standard measure of exposure to 

international competition, to our main specification in equation (4).
31

 Import penetration is available 

only at the 4-digit NAICS sectors, thus trade effects are identified exploiting variation within 3-digit 

NAICS sectors. We use only manufacturing sectors in Table 13, since trade exposure is absent in 

utilities and construction. These results are presented in the odd columns of Table 13.  

In the even columns of Table 13, we also include an interaction term between ER and import 

penetration. This interaction allows us to test whether the effect of ER on demand for skills is 

stronger in sectors facing greater import competition. This would be the case if, for example, greater 

import competition makes it easier for dirty industries to relocate to countries with weaker 
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 See in particular Bloom et al (2014) on this. 
31

 We use data on bilateral trade by NAICS industry (Schott, 2008) combined with the NBER-CES Manufacturing 

Industry Database. Import penetration by NAICS industry is measured as the ratio between the value of import and the 

value of output consumed domestically (value of shipment plus import minus export), calculated using data from 2009. 
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environmental standards. Finally, note that import penetration can also be endogenous to workforce 

skills. Sectors with high levels of productivity employ a larger share of high skilled workers and, at 

the same time, are able to escape international competition. Thus, we instrument import penetration 

using its lagged values (Autor and Dorn, 2013). 

 

[Table 13 about here] 

 

The most important result, presented in odd Columns of Table 13, is that the qualitative effect of 

ER is not affected by the inclusion of import penetration. The one exception is years of training, 

which becomes insignificant. In line with previous research (Ng and Li, 2013), import penetration 

tends to increase the demand of high skilled workers, but the effect is significant only for the 

Greenness indicator and NR skills, including both RTI and the closely related GGS Operation 

Management. In the even Columns of Table 13, we present results for the interaction between 

import penetration and ER. Since stricter ER results in lower emissions, a negative sign indicates 

that ER has a stronger effect when import penetration is higher. As expected, the joint 

compositional effects of ER and import penetration reinforce each other for two GGS, Monitoring 

and Operation Management, as well as for more general non-routine tasks. Interestingly, the effect 

of ER on Monitoring skills is observed only in sectors with high exposure also to import 

competition. Conversely, high exposure to both regulatory and trade shocks decrease the demand of 

Engineering and Science skills relative to sectors with lower levels of exposure to import 

competition. However, the cut-off point at which the positive effect of reducing emissions becomes 

insignificant is reached occurs at the 75
th

 percentile of import penetration. Overall, these results 

indicate that the compositional changes brought about by trade and ER reinforce each other for 

classical non-routine skills, but at the same time being over-exposed to trade and regulatory shocks 

may put an excessive burden on the firm and slightly reduce its capacity to attract scientific talents. 

These conclusions are admittedly preliminary and indicate a promising avenue for future research. 

6 Conclusions 

This paper takes a first step in filling a gap in our understanding of the incidence of environmental 

regulation in the labour market. To this end it has, first, identified a set of skills that define more 

closely green occupations and, secondly, has gauged the effect of environmental regulation on the 

demand for these skills. The contribution to the extant literature is twofold.  
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First, our empirically-driven selection of green skills allows the detection of skill gaps which can be 

used to compute measures of skill transferability from brown to green occupations, or to specify in 

even greater details the types of general skills in high demand in specific sectors or sub-groups of 

green jobs (e.g. those related to renewable energy). Of the four competences that emerge from this 

exercise all have a strong analytic and technical content, but only Operation Management has 

considerable overlap with the Non-routine skills that complement ICTs. In turn, the other green 

skills are more related to specific applications of Science and Engineering disciplines that require 

heavy investments in formal education. 

Second, our findings concerning quantitative effects bear relevance for the design of policy. If a 

target of a 50% emission reduction entails a 9.5% increase of demand for scientists and a 4.5% of 

demand of engineering professions, education emerges as a critical ingredient in the policy mix to 

promote sustainable economic growth. Note that an increase in the supply of these skills would pin 

down the wages of engineers and scientists thus reducing the cost of adopting clean production 

methods and thus the harmful economic consequences of regulation. 

Finally, our analysis suggests that compositional changes due to employment contraction among 

sectors that are highly exposed to trade and regulation drive only partially the positive effect of 

environmental regulation. The positive effect observed for expanding sectors can be more safely 

attributed to technological and organizational changes affecting the demand of skills. The interplay 

of compositional effects and pure technological effects requires, however, further investigations 

using panel data that allow decomposing the relative magnitude of the two effects. 
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Appendix A: Green Skills 

This appendix discusses in detail the results of the selection of GGS. Table 14 reports the estimated 

β of equation 2 for all general skills and tasks for which the beta was significant at the 99 percent 

level or more. Recall that results are based on 921 occupations observed at the 8-digit SOC level for 

the year 2012 and regressions include 4-digit SOC dummies. Out of 108 general skills and tasks, 16 

have been selected as particularly relevant for green occupations.  

 

[Table 14 and Table 15 about here] 

 

As anticipated in section 3.2, we perform a principal component analysis (PCA) on these 20 general 

skills and tasks to generate more aggregate measures of GGS. As discussed in section 3.2, we retain 

five components with respective Eigenvalues (unrotated components) of 5.58, 3.93, 1.34, 0.99 and 

0.92, and a cumulative explained variance of 79.72 percent. Table 15 shows the factor loadings of 

the 5 rotated components (orthogonal VARIMAX rotation) that exceeded a 0.2 threshold. The first 

component groups together what we define Engineering & Technical Skills. The second 

component, that we label Operation Management Skills, is composed by a group of skills relevant 

to coordinate management practices with new technical devices. In the third component we observe 

three general skills that we label Monitoring Skills. In this component we observe, however, that 

two of the general skills (Law and Government and Evaluating Information to Determine 

Compliance with Standards) load much more than the third one (Operating Vehicles, Mechanized 

Devices, or Equipment) which, in turns, loads negatively on the second component. Moreover, from 

careful reading of the description of these skills, we noted that while the first two clearly define 

different aspects of Monitoring Skills, the third one does not relate directly to monitoring skills. We 

thus decided to exclude this variable from the monitoring skills construct. The fourth component 

clearly refers to Science Skills. Finally, the fifth components is characterized by a big factor loading 

from Geography (0.84) and a smaller loading from Law and Government (that was, however, 

already assigned to component 3). Geographic skills pertain to urban planning and analysis of 

emission dynamics (several profession intensive of Geography skills are green, such as 

Environmental Restoration Planners, Landscape Architects and Atmospheric and Space Scientist). 

Due to the specificity of this last component, that only refer to one general skill, we do not include 

it in the main analysis. Results on the impact of ER for this GGS and for each single general skill 

selected here (including “Operating Vehicles, Mechanized Devices, or Equipment” and 

“Geography”, that were excluded from the GGS constructs) are discussed in the Appendix D.  
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We tried several alternative ways of selecting GGS to assess the robustness of our selection 

procedure and to identify the GGS that are selected irrespective of the procedure. We present here 

two of these additional exercises. First, we estimate equation 2 by weighting each occupation for its 

number of employees in year 2012
32

. Note that this is not our favourite selection method because it 

assigns excessive importance to occupations that are highly present in the service sector and thus 

are not directly affected by the sustainability issues. Results are reported in Table 16. This second 

method only retain general skills that enter two of our Engineering & Technical and Science skills 

constructs, with the addition of Chemistry that was not selected in our preferred approach. 

Engineering & Technical and Science skills appear to be the set of core technical and scientific 

skills that are required in green occupations. Second, we decompose the indicator of Greenness into 

its two components, that is the count of green specific tasks and the count of total specific tasks. In 

this specification we allow both component of the Greenness indicator to have an independent 

effect on general skills. Results for the coefficients associated with green specific tasks and total 

specific tasks are reported in Table 17. We observe a positive and significant (at the 99 percent 

level) relationship between the number of green specific tasks for 13 general skills. Out of these 13 

skills, just one (Systems Evaluation) also shows a positive and significant correlation with the total 

number of specific tasks. These 13 general skills represent a subset of our initial selection of 16 

general skills. This second criterion excludes two general skills that entered the Operation 

Management GGS (System Analysis and Updating and Using Relevant Knowledge) and one 

Science skills (Biology). 

Appendix B: Data 

O*NET and BLS data 

Our set of skill measures is built using occupation-industry-state employment levels from BLS to 

weight O*NET data of occupational skills. We use the release 17.0 (July 2012) of O*NET and 

employment figures for the year 2012. Note that occupation-industry-state cells with less than 30 

employees are not reported. Out of 18,942,800 employees in NAICS industries 21, 22, 31, 32 and 

33 in year 2012 (Occupational Employment Statistics, BLS), detailed information (6-digit SOC 

occupation
33

 by 4-digit NAICS industry) by state is available for 14,882,610 employees, that is 78.6 

percent of the total. 
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 Weights at the 6-digit SOC level for year 2012 are based on the Occupational Employment Statistics prepared by the 

Bureau of Labor Statistics. It collects, among other things, aggregate employment measures by detailed occupation. No 

information is available at the 8-digit SOC level. As discussed in Appendix B about state-industry measures, we decide 

to weight equally each 8-digit occupation within its corresponding 6-digit macro-occupation. 
33

 Both O*NET and BLS use the 2010 version of the Standard Occupational Classification. 



32 

It is also worth recalling that the mismatch between the aggregation of the O*NET database and the 

Occupational Employment Statistics has been addressed by assuming that employees are uniformly 

distributed across 8-digit SOC occupations within each 6-digit SOC occupation. 8-digit and 6-digit 

occupations coincide for 678 occupations. For the remaining 97 6-digit occupations the average 

number of 8-digit occupation is 3 and the median is 2, with a maximum of 12. The task constructs 

at 6-digit SOC are built as the simple mean of the task constructs at 8-digit SOC. This is clearly a 

limitation of the combination of O*NET with the BLS Occupational Employment Statistics 

Database but, in absence of detailed information on employment at the 8-digit SOC level, the 

aggregation of information of O*NET by means of simple mean remains the only viable option. 

Construction of the skill measures 

Skill measures at the industry-state level are built using equation 3, i.e. 𝐺𝐺𝑆𝑖𝑗 = ∑ 𝐺𝐺𝑆𝑘𝑘 ×
𝐿𝑘𝑖𝑗

𝐿𝑖𝑗
. 

Importance scores range from 1 (not important) to 5 (very important) and measure how important is 

the general task for the occupation. Before computing GGSk, we rescale scores to range, potentially, 

between 0 and 1 (we subtract 1 and divide by 4 each item that enters GGSk). Some of the items that 

are needed for the construction of the RC indicators suggested by Acemoglu and Autor (2010) are 

‘Work context’ (labelled as ‘cx’ in Table 4). Scores for ‘Work context’ items refer, depending on 

the specific item, on the importance, frequency or other dimensions of the work context analysed. 

Scores, that range from 1 to 5, have been rescaled to vary between 0 and 1 in the same way as 

importance scores. 

Emissions 

We retrieve information on the six criteria pollutants regulated by the Clean Air Act (SO2, NOx, 

VOC, lead, ozone and PM 2.5) and on the hazardous substances subject to the National Emissions 

Standards for Hazardous Air Pollutants (NESHAPS). Emissions for criteria pollutants from point 

sources are collected by the EPA every third year and published in the National Emission Inventory 

(NEI) database at the facility level while releases of hazardous substances from point sources are 

collected every year by the EPA and published in the Toxic Release Inventory (TRI). For both NEI 

and TRI, the obligation to report emissions concerns facilities above certain size and emission 

thresholds. While the thresholds for TRI are set at the federal level
34

, thresholds for the NEI are set 

at the state level. For what concerns hazardous substances in the TRI, from the initial list of 

chemical substances we selected 148 subject to concentration standards under the 1990 CAA 

                                                           
34

 The obligation to submit a TRI report concerns facilities employing 10 or more full-time equivalent employees and 

manufacturing, processing or using TRI-listed chemicals above certain thresholds. More specifically, facilities should 

manufacture or process more than 25,000 lbs. of a TRI-listed chemical or use more than 10,000 lbs. of a listed chemical 

in a given year. 
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Amendments for which we have information on the toxicity potential and weight toxic emissions 

accordingly.
35

 

For both criteria pollutants and emissions of hazardous substances, we assigned emissions to the 

main 4-digit NAICS industry and state in which the polluting facility operates. We employ 

weighted average of emissions in the years 2002, 2005, 2008 and 2011. The weights are such that 

emissions at t are weighted half as much as emissions at t+3. The weights for 2002, 2005, 2008 and 

2011 are, respectively, 0.0667, 0.1333, 0.2667 and 0.5333. Lead emissions are available for 2011 

only. Results remain unaffected when choosing different weighting. Trends in total emissions of 

criteria pollutants for point sources in the US are reported in Table 18. We divide emissions by the 

number or employees by industry and state in year 2011 (Quarterly Census of Employment and 

Wages, BLS). 

 

[Table 18 about here] 

 

Instrumental variables 

We instrument our proxy of regulatory stringency, that is emissions per employee, with the number 

of violations and the number of (full) inspections by industry (main NAICS 4-digit code of the 

facility) and state. Information on violations and inspections is retrieved from the Enforcement and 

Compliance History Online (ECHO) database maintained by the EPA. We count full inspections
36

 

and violations
37

 per employee (2009) registered in the period 2000-2009. 

Appendix C: Additional information and robustness checks for results discussed 

in Section 5 

[Table 19, Table 20 Table 23 about here] 
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 We use average toxicity weights for inhalation unit risk and oral slope factors from the EPA’s Risk-Screening 

Environmental Indicators (RSEI) (EPA, 2013). 
36

 As suggested in the guidelines of ECHO (http://echo.epa.gov/files/echodownloads/AFS_Data_Download.pdf), full 

inspections correspond to the following codes of the field ‘NATIONAL_ACTION_TYPE’: FF (STATE CONDUCTED 

FCE/OFF-SITE), FS (STATE CONDUCTED FCE/ON-SITE), FE (EPA FCE/ON-SITE - FCE = Full Compliance 

Evaluation), FZ (EPA CONDUCTED FCE/OFF-SITE), 1A (EPA INSPECTION - LEVEL 2 OR GREATER), and 5C 

(STATE INSPECTION - LEVEL 2 OR GREATER). 
37

 We record violations of any of the pollutants regulated by the EPO. 

http://echo.epa.gov/files/echodownloads/AFS_Data_Download.pdf
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Appendix D: Results for single items of skills 

In this appendix we briefly discuss results of our baseline specification when using each single 

general skill that results to be a ‘green skill’ according to our selection procedure (see Appendix). 

We have a total of 16 green general skills that have been selected as described in Section 3.2 and 

Appendix A. Results for our baseline specification (see Section 4.2) for these general skills are 

reported in Table 27. 

 

[Table 27 about here] 

 

First, we observe a positive and significant relationship between environmental regulatory 

stringency and the demand for skills (negative sign for our proxy of regulatory stringency), both 

with 3-digit and 4 digit NAICS dummies, for 8 out of 16 general skill measures while for other 3 

general skill measures the relationship holds only for one of the two specifications while it is not 

statistically significant for the other. For the remaining 5 measures (including Geography), a 

positive sign is observed for Operating Vehicles, Mechanized Devices, or Equipment (that did not 

enter any GGS measure), no significant relationship is found for Building and Construction, 

Estimating the Quantifiable Characteristics of Products, Events, or Information and Evaluating 

Information to Determine Compliance with Standards while we observe a change in the sign, from 

negative to positive when moving from 3-digit NAICS dummies to 4-digit NAICS dummies, for 

Mechanical skills. All in all, results for our GGS measures are confirmed for most of the items that 

enter the GGS construct themselves. 

  



35 

Main tables 

Table 1 – Examples of green occupation by level of ‘greenness’ 

 Greenness=1 Greenness btw 0.5 and 0.3 Greenness<0.3 

Green Enhanced 

Occupations 

Environmental Engineers, 

Environ Science 

Technicians, Hazardous 

Material Removers 

Aerospace Engineers 

Atmospheric and Space 

Scientists, Automotive 

Speciality Technicians, 

Roofers 

Construction Workers, 

Maintenance & Repair 

Workers, Inspectors, 

Marketing Managers 

New and Emerging 

Green Occupations 

Wind Energy Engineers, 

Fuel Cell Technicians, 

Recycling Coordinators 

Electrical Engineering 

Technologists, Biochemical 

Engineers, Supply Chain 

Managers, Precision 

Agriculture Technicians 

Traditional Engineering 

Occupations, Transportation 

Planners, Compliance 

Managers 

 

Table 2 – List of jobs using green skills 

SOC 2010 Title Greenness Total spec tasks Green spec tasks 

11-1011.03 Chief Sustainability Officers 1.00 18 18 

11-1021.00 General and Operations Managers 0.06 18 1 

11-2021.00 Marketing Managers 0.20 20 4 

11-3051.02 Geothermal Production Managers 1.00 17 17 

11-3051.04 Biomass Power Plant Managers 1.00 18 18 

11-3071.01 Transportation Managers 0.18 28 5 

11-3071.02 Storage and Distribution Managers 0.23 30 7 

11-3071.03 Logistics Managers 0.30 30 9 

11-9021.00 Construction Managers 0.28 25 7 

11-9041.00 Architectural and Engineering Managers 0.19 21 4 

11-9121.02 Water Resource Specialists 1.00 21 21 

11-9199.01 Regulatory Affairs Managers 0.15 27 4 

11-9199.02 Compliance Managers 0.20 30 6 

11-9199.04 Supply Chain Managers 0.30 30 9 

11-9199.11 Brownfield Redevelopment Specialists and Site Managers 1.00 22 22 

13-1022.00 Wholesale and Retail Buyers, Except Farm Products 0.24 21 5 

13-1041.07 Regulatory Affairs Specialists 0.19 32 6 

13-1081.01 Logistics Engineers 0.37 30 11 

13-1081.02 Logistics Analysts 0.19 31 6 

13-1151.00 Training and Development Specialists 0.10 21 2 

13-1199.01 Energy Auditors 1.00 21 21 

13-1199.05 Sustainability Specialists 1.00 14 14 

13-2051.00 Financial Analysts 0.33 18 6 

13-2052.00 Personal Financial Advisors 0.14 21 3 

13-2099.02 Risk Management Specialists 0.17 24 4 

15-1199.04 Geospatial Information Scientists and Technologists 0.08 24 2 

15-1199.05 Geographic Information Systems Technicians 0.26 19 5 

17-1011.00 Architects, Except Landscape and Naval 0.37 19 7 

17-1012.00 Landscape Architects 0.26 19 5 

17-2011.00 Aerospace Engineers 0.33 18 6 

17-2051.00 Civil Engineers 0.47 17 8 

17-2051.01 Transportation Engineers 0.23 26 6 

17-2071.00 Electrical Engineers 0.14 22 3 

17-2072.00 Electronics Engineers, Except Computer 0.22 23 5 

17-2081.00 Environmental Engineers 1.00 28 28 

17-2081.01 Water/Wastewater Engineers 1.00 27 27 

17-2141.00 Mechanical Engineers 0.26 27 7 

17-2161.00 Nuclear Engineers 0.35 20 7 

17-2199.01 Biochemical Engineers 0.34 35 12 

17-2199.02 Validation Engineers 0.09 22 2 
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SOC 2010 Title Greenness Total spec tasks Green spec tasks 

17-2199.03 Energy Engineers 0.95 21 20 

17-2199.04 Manufacturing Engineers 0.17 24 4 

17-2199.05 Mechatronics Engineers 0.13 23 3 

17-2199.07 Photonics Engineers 0.19 26 5 

17-2199.08 Robotics Engineers 0.08 24 2 

17-2199.10 Wind Energy Engineers 1.00 16 16 

17-3023.03 Electrical Engineering Technicians 0.21 24 5 

17-3024.00 Electro-Mechanical Technicians 0.08 12 1 

17-3024.01 Robotics Technicians 0.09 23 2 

17-3025.00 Environmental Engineering Technicians 1.00 26 26 

17-3026.00 Industrial Engineering Technicians 0.22 18 4 

17-3029.02 Electrical Engineering Technologists 0.40 20 8 

17-3029.03 Electromechanical Engineering Technologists 0.29 17 5 

17-3029.04 Electronics Engineering Technologists 0.17 23 4 

17-3029.05 Industrial Engineering Technologists 0.17 23 4 

17-3029.06 Manufacturing Engineering Technologists 0.28 29 8 

17-3029.07 Mechanical Engineering Technologists 0.14 21 3 

17-3029.08 Photonics Technicians 0.20 30 6 

17-3029.09 Manufacturing Production Technicians 0.20 30 6 

19-1013.00 Soil and Plant Scientists 0.63 27 17 

19-1031.01 Soil and Water Conservationists 1.00 33 33 

19-2021.00 Atmospheric and Space Scientists 0.50 24 12 

19-2041.01 Climate Change Analysts 1.00 14 14 

19-2041.02 Environmental Restoration Planners 1.00 22 22 

19-2042.00 Geoscientists, Except Hydrologists and Geographers 0.48 31 15 

19-2099.01 Remote Sensing Scientists and Technologists 0.08 24 2 

19-3011.01 Environmental Economists 1.00 19 19 

19-3051.00 Urban and Regional Planners 0.37 19 7 

19-3099.01 Transportation Planners 0.14 22 3 

19-4011.01 Agricultural Technicians 0.12 25 3 

19-4041.01 Geophysical Data Technicians 0.24 21 5 

19-4041.02 Geological Sample Test Technicians 0.19 16 3 

19-4051.01 Nuclear Equipment Operation Technicians 0.41 17 7 

19-4091.00 
Environmental Science and Protection Technicians, Including 

Health 
1.00 25 25 

19-4099.02 Precision Agriculture Technicians 0.30 23 7 

19-4099.03 Remote Sensing Technicians 0.14 22 3 

23-1022.00 Arbitrators, Mediators, and Conciliators 0.05 20 1 

27-3022.00 Reporters and Correspondents 0.05 22 1 

27-3031.00 Public Relations Specialists 0.24 17 4 

29-9012.00 Occupational Health and Safety Technicians 0.35 26 9 

41-4011.00 
Sales Representatives, Wholesale and Manufacturing, Technical 

and Scientific Products 
0.11 38 4 

41-4011.07 Solar Sales Representatives and Assessors 1.00 13 13 

43-5071.00 Shipping, Receiving, and Traffic Clerks 0.09 11 1 

47-2061.00 Construction Laborers 0.18 33 6 

47-2152.01 Pipe Fitters and Steamfitters 0.15 20 3 

47-2152.02 Plumbers 0.39 23 9 

47-2181.00 Roofers 0.30 30 9 

47-2211.00 Sheet Metal Workers 0.24 25 6 

47-2231.00 Solar Photovoltaic Installers 1.00 26 26 

47-4011.00 Construction and Building Inspectors 0.26 19 5 

47-4041.00 Hazardous Materials Removal Workers 0.91 23 21 

47-4099.03 Weatherization Installers and Technicians 1.00 18 18 

47-5013.00 Service Unit Operators, Oil, Gas, and Mining 0.05 19 1 

47-5041.00 Continuous Mining Machine Operators 0.17 12 2 

49-3023.02 Automotive Specialty Technicians 0.40 25 10 

49-3031.00 Bus and Truck Mechanics and Diesel Engine Specialists 0.16 25 4 

49-9021.01 Heating and Air Conditioning Mechanics and Installers 0.23 30 7 

49-9071.00 Maintenance and Repair Workers, General 0.13 31 4 

49-9081.00 Wind Turbine Service Technicians 1.00 13 13 
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SOC 2010 Title Greenness Total spec tasks Green spec tasks 

49-9099.01 Geothermal Technicians 1.00 24 24 

51-2011.00 Aircraft Structure, Surfaces, Rigging, and Systems Assemblers 0.13 30 4 

51-4041.00 Machinists 0.07 29 2 

51-8011.00 Nuclear Power Reactor Operators 0.33 18 6 

51-8013.00 Power Plant Operators 0.21 24 5 

51-8099.03 Biomass Plant Technicians 1.00 16 16 

51-9012.00 
Separating, Filtering, Clarifying, Precipitating, and Still Machine 

Setters, Operators, and Tenders 
0.05 20 1 

51-9061.00 Inspectors, Testers, Sorters, Samplers, and Weighers 0.06 32 2 

51-9199.01 Recycling and Reclamation Workers 1.00 18 18 

53-3032.00 Heavy and Tractor-Trailer Truck Drivers 0.09 33 3 

53-6051.07 
Transportation Vehicle, Equipment and Systems Inspectors, Except 

Aviation 
0.41 22 9 

53-7081.00 Refuse and Recyclable Material Collectors 1.00 16 16 

 

Table 3 - Distribution of occupations and green occupations (8-digit SOC) across macro-

occupations 

SOC 2-digit 
Tot N of 

occupations 

Green 

occupations 

(greenness>0) 

11 - Management 47 15 

13 - Business and Financial Operations 46 10 

15 - Computer and Mathematical 29 2 

17 - Architecture and Engineering 61 32 

19 - Life, Physical, and Social Science 58 17 

21 - Community and Social Service 14 0 

23 - Legal 8 1 

25 - Education, Training, and Library 58 0 

27 - Arts, Design, Entertainment, Sports, and Media 43 2 

29 - Healthcare Practitioners and Technical 83 1 

31 - Healthcare Support 17 0 

33 - Protective Service 28 0 

35 - Food Preparation and Serving Related 16 0 

37 - Building and Grounds Cleaning and Maintenance 8 0 

39 - Personal Care and Service 32 0 

41 - Sales and Related 22 2 

43 - Office and Administrative Support 61 1 

45 - Farming, Fishing, and Forestry 16 0 

47 - Construction and Extraction 59 11 

49 - Installation, Maintenance, and Repair 54 6 

51 - Production 109 8 

53 - Transportation and Material Moving 52 3 

Total 921 111 
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Table 4 –Skills measures from O*NET: Green and Classic 

Engineering & Technical 

2C3b Engineering and Technology 

2C3c Design 

2C3d Building and Construction 

2C3e Mechanical 

4A3b2 Drafting, Laying Out, and Specifying Technical Devices, Parts, and Equipment 

Science 

2C4b Physics 

2C4d Biology 

Operation Management 

2B4g Systems Analysis 

2B4h Systems Evaluation 

4A2b3 Updating and Using Relevant Knowledge 

4A4b6 Provide Consultation and Advice to Others 

Monitoring 

2C8b Law and Government 

4A2a3 Evaluating Information to Determine Compliance with Standards 

Non-routine analytical 

4A2a4 Analyzing Data or Information 

4A2b2 Thinking Creatively 

4A4a1 Interpreting the Meaning of Information for Others 

Non-routine interactive 

4A4a4 Establishing and Maintaining Interpersonal Relationships 

4A4b4 Guiding, Directing, and Motivating Subordinates 

4A4b5 Coaching and Developing Others 

Routine cognitive 

4C3b4 (cx) Importance of Being Exact or Accurate 

4C3b7 (cx) Importance of Repeating Same Tasks 

4C3b8 (cx) Structured versus Unstructured Work (reverse) 

Routine manual 

4A3a3 Controlling Machines and Processes 

4C2d1i (cx) Spend Time Making Repetitive Motions 

4C3d3 (cx) Pace Determined by Speed of Equipment 

 

Table 5 - Descriptive statistics by level of Greenness 

  Non-green 
Low 

greenness 

Medium 

greennes 

High 

greennes 
Total 

  0 (0,0.25] (0.25,0.5] (0.5,1]   

N occupations 810 56 28 27 921 

Empl share 0.8895 0.0819 0.0159 0.0127 1 

Empl share (weighted with greenness) - 0.0098 0.0054 0.0126 0.0278 

Engineering & Technical 0.176 0.409 0.546 0.493 0.205 

Science 0.428 0.472 0.584 0.552 0.436 

Operation Management 0.132 0.185 0.276 0.340 0.142 

Monitoring 0.444 0.489 0.559 0.551 0.451 

Routine task intensity -0.112 -0.188 -0.388 -0.362 -0.126 

Years of training 1.63 1.347 2.148 1.451 1.613 

N=921 occupations (8-digit SOC). Averages weighted by employment in 2012 at the 6-digit occupation level. 
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Table 6 – Correlation between skill measures 

  

E
n

g
in

ee
ri

n
g

 &
 T

ec
h

n
ic

al
 

S
ci

en
ce

 

O
p

er
at

io
n

 M
an

ag
em

en
t 

M
o

n
it

o
ri

n
g
 

G
re

en
n

es
s 

R
o

u
ti

n
e 

ta
sk

 i
n

te
n

si
ty

 

R
o

u
ti

n
e 

co
g

n
it

iv
e 

ta
sk

s 

R
o

u
ti

n
e 

m
an

u
al

 t
as

k
s 

N
o

n
-r

o
u

ti
n

e 
an

al
y

ti
ca

l 
ta

sk
s 

N
o

n
-r

o
u

ti
n

e 
in

te
ra

ct
iv

e 
ta

sk
s 

L
o

g
(Y

ea
rs

 o
f 

tr
ai

n
in

g
) 

Engineering & Technical 1.00 0.45 0.26 0.14 0.38 0.01 -0.21 0.30 0.20 0.05 0.10 

Science  1.00 0.42 0.34 0.24 -0.23 -0.19 0.02 0.38 0.31 0.15 

Operation Management   1.00 0.65 0.16 -0.75 -0.20 -0.48 0.90 0.75 0.14 

Monitoring    1.00 0.13 -0.50 -0.02 -0.35 0.64 0.53 0.05 

Greenness     1.00 -0.09 -0.14 -0.01 0.14 0.01 0.02 

Routine task intensity      1.00 0.57 0.83 -0.79 -0.75 -0.23 

Routine cognitive tasks       1.00 0.29 -0.21 -0.30 -0.34 

Routine manual tasks        1.00 -0.52 -0.43 -0.08 

Non-routine analytical tasks         1.00 0.67 0.14 

Non-routine interactive tasks          1.00 0.22 

Log(Years of training)                     1.00 

N=921 occupations (8-digit SOC). Pairwise correlations weighted by employment in 2012 at the 6-digit 

occupation level. 
 

Table 7 – Descriptive statistics by industry 

NAICS 

Engineering 

& 

Technical 

Science 
Operation 

Management 
Monitoring Greenness RTI 

Non-

routine 

tasks 

Years of 

training 
Log(SO2/L) 

Import 

penetration 

211 0.388 0.236 0.514 0.520 0.070 -0.310 0.5650 1.815 9.638 - 

212 0.454 0.210 0.414 0.491 0.040 0.106 0.4710 1.451 7.834 - 

213 0.406 0.209 0.415 0.469 0.037 0.070 0.4875 1.748 2.119 - 

221 0.400 0.256 0.491 0.527 0.046 -0.225 0.5620 1.861 11.511 - 

236 0.506 0.188 0.416 0.491 0.066 -0.160 0.5185 1.783 2.129 - 

237 0.485 0.206 0.397 0.479 0.075 -0.038 0.4995 1.729 2.827 - 

238 0.502 0.198 0.421 0.477 0.072 -0.090 0.5010 2.257 1.642 - 

311 0.296 0.131 0.347 0.379 0.024 0.195 0.4380 1.388 5.235 0.038 

312 0.284 0.102 0.393 0.380 0.023 0.024 0.4680 1.088 6.651 0.086 

313 0.302 0.118 0.379 0.354 0.015 0.205 0.4575 1.030 6.901 0.036 

314 0.266 0.072 0.351 0.328 0.013 0.255 0.4195 1.709 5.706 0.109 

315 0.252 0.066 0.349 0.325 0.011 0.240 0.4150 1.830 2.994 0.253 

316 0.270 0.061 0.316 0.324 0.010 0.236 0.3980 1.295 5.012 0.509 

321 0.354 0.102 0.357 0.363 0.021 0.177 0.4470 1.401 6.019 0.096 

322 0.349 0.121 0.428 0.386 0.039 0.049 0.5080 1.663 7.378 0.115 

323 0.311 0.089 0.406 0.360 0.016 0.050 0.4770 1.205 3.122 0.014 

324 0.397 0.195 0.490 0.478 0.057 -0.130 0.5390 1.231 11.922 0.031 

325 0.357 0.190 0.466 0.460 0.044 -0.076 0.5210 1.134 7.102 0.083 

326 0.329 0.119 0.387 0.389 0.035 0.131 0.4660 1.365 4.560 0.024 

327 0.360 0.133 0.405 0.430 0.056 0.056 0.4735 1.209 9.745 0.109 

331 0.378 0.138 0.399 0.388 0.029 0.133 0.4665 1.340 8.529 0.140 

332 0.381 0.131 0.402 0.391 0.036 0.079 0.4755 1.505 3.755 0.041 

333 0.394 0.143 0.432 0.414 0.047 -0.021 0.5000 1.531 3.799 0.075 

334 0.384 0.169 0.494 0.458 0.064 -0.271 0.5520 1.331 3.004 0.091 

335 0.354 0.136 0.411 0.426 0.042 -0.010 0.4945 1.376 4.791 0.112 

336 0.398 0.150 0.437 0.436 0.057 -0.024 0.5045 1.608 4.245 0.138 

337 0.369 0.095 0.368 0.370 0.016 0.150 0.4515 1.412 4.423 0.103 

339 0.331 0.133 0.425 0.416 0.043 -0.059 0.5055 1.496 3.404 0.130 

Total 0.404 0.163 0.418 0.437 0.050 -0.021 0.4955 1.646 4.244 0.051 

N=3328 industry-state pairs. Averages weighted by employment in 2012 at the state and NAICS 4-digit level. 
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Table 8 – Correlation between covariates 
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Log(SO2/L) 1.00 0.79 0.88 0.90 0.87 0.78 0.52 0.38 -0.03 0.37 0.11 

Log(ozone/L)  1.00 0.92 0.94 0.91 0.69 0.59 0.66 -0.06 0.52 0.06 

Log(CO/L)   1.00 0.97 0.94 0.77 0.59 0.57 -0.03 0.49 0.14 

Log(NOx/L)    1.00 0.94 0.75 0.59 0.59 -0.03 0.50 0.11 

Log(PM2.5/L)     1.00 0.79 0.58 0.54 -0.05 0.44 0.08 

Log(lead/L)      1.00 0.54 0.26 -0.07 0.34 0.16 

Log(TRI/L)       1.00 0.35 -0.05 0.48 0.07 

Log(count NEI facilities)        1.00 -0.08 0.38 -0.14 

Empl growth 2002-2011         1.00 0.11 -0.05 

Log(empl/N estab)          1.00 0.18 

Import penetration           1.00 

N=3328 industry-state pairs. Pairwise correlation weighted by employment in 2012 at the state and 

NAICS 4-digit level. * p<0.05. 

 

Table 9 – Impact of environmental regulation on skills (with 3-digit NAICS dummies) 

  Greenness 
Engineering & 

Technical 
Science 

Operation 

Management 
Monitoring 

Green specific 

tasks 

log(SO2/L) -0.00303*** -0.00878*** -0.0110*** -0.0134*** -0.00466*** -0.211*** 

  (0.000974) (0.00193) (0.00155) (0.00271) (0.00118) (0.0461)  

Hansen test (p-value) 0.241 0.699 0.250 0.648 0.849 0.251  

  
Non-green 

specific tasks 
RTI NR tasks R manual R cognitive 

Log(Years of 

training) 

log(SO2/L) -0.0557 0.0268*** -0.00479*** 0.0192*** -0.00259*** -0.0504*** 

  (0.121) (0.00578) (0.00143) (0.00278) (0.000814) (0.0126)  

Hansen test (p-value) 0.878 0.815 0.526 0.889 0.996 0.875  

N=3328 industry-state pairs. Standard errors clustered by state and 3-digit NAICS in parenthesis. * p<0.10, ** p<0.05, *** p<0.01. 

Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. Controls not shown: growth rate of employees 

2002-2012; log average establishment size (employees per establishment) in 2012; log of the count of facilities reporting to the 

NEI; NAICS 3-digit dummies, state dummies. IVs: log of violation (2000-2009) per employee (2009); log of full inspection (2000-

2009) per employee (2012). Partial F of excluded IVs: 112. 
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Table 10 – Descriptive statistics of our main dependent variables 

Variable Average S.D. Min 
25th 

percentile 
Median 

75th 

percentile 
Max IQR 

Greenness 0.050 0.036 0.000 0.023 0.044 0.073 1.000 0.050 

Engineering & 

Technical 
0.404 0.081 0.062 0.339 0.396 0.471 0.716 0.133 

Science 0.163 0.054 0.011 0.122 0.159 0.202 0.621 0.080 

Operation Management 0.418 0.055 0.177 0.381 0.409 0.455 0.718 0.074 

Monitoring 0.437 0.054 0.210 0.392 0.441 0.479 0.678 0.087 

Green specific tasks 1.881 1.356 0.000 0.903 1.666 2.668 35.000 1.765 

Non-green spec tasks 25.796 4.474 8.000 23.129 25.897 28.296 219.000 5.167 

RTI -0.021 0.174 -1.109 -0.155 -0.010 0.096 0.726 0.251 

NR tasks 0.496 0.043 0.278 0.472 0.493 0.518 0.764 0.047 

R manual 0.518 0.081 0.104 0.453 0.528 0.578 0.837 0.124 

R cognitive 0.459 0.025 0.280 0.440 0.460 0.477 0.611 0.037 

log(Years of training) 0.458 0.287 -1.556 0.302 0.440 0.604 1.465 0.302 

N=3328 industry-state pairs. Statistics weighted by employment in 2012. 

 

Table 11 – Impact of environmental regulation on skills (with 4-digit NAICS dummies) 

  Greenness 
Engineering & 

Technical 
Science 

Operation 

Management 
Monitoring 

Green specific 

tasks 

log(SO2/L) -0.00251* -0.00171 -0.00305** -0.00855*** -0.00258** -0.0941 

  (0.00138) (0.00209) (0.00148) (0.00183) (0.00126) (0.0641) 

Hansen test (p-value) 0.746 0.536 0.227 0.641 0.498 0.768 

  
Non-green 

specific tasks 
RTI NR tasks R manual R cognitive 

Log(Years of 

training) 

log(SO2/L) -0.149 0.0319*** -0.00654*** 0.0158*** 0.00152** 0.00571 

  (0.173) (0.00563) (0.00137) (0.00261) (0.000759) (0.00778) 

Hansen test (p-value) 0.209 0.470 0.435 0.386 0.554 0.117 

N=3328 industry-state pairs. Standard errors clustered by state and 3-digit NAICS in parenthesis. * p<0.10, ** p<0.05, *** p<0.01. 

Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. Controls not shown: growth rate of employees 

2002-2012; log average establishment size (employees per establishment) in 2012; log of the count of facilities reporting to the 

NEI; NAICS 4-digit dummies, state dummies. IVs: log of violation (2000-2009) per employee (2009); log of full inspection (2000-

2009) per employee (2009). Partial F of excluded IVs: 42.35. 
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Table 12 - Impact of environmental regulation on skills: contracting vs growing industries 

  Greenness Engineering & Technical Science Operation Management 

  Contracting Growing Contracting Growing Contracting Growing Contracting Growing 

log(SO2/L) -0.00345** -0.00205 -0.0115*** -0.00597* -0.0127*** -0.0109*** -0.0178*** -0.00971**  

  (0.00137) (0.00197) (0.00255) (0.00358) (0.00213) (0.00291) (0.00376) (0.00413)  

Hansen test (p-

value) 
0.792 0.0263 0.978 0.370 0.928 0.310 0.482 0.532  

  Monitoring RTI Non-routine tasks Log(Years of training) 

  Contracting Growing Contracting Growing Contracting Growing Contracting Growing 

log(SO2/L) -0.00568*** -0.00450** 0.0345*** 0.0174* -0.00661*** -0.00311 -0.0645*** -0.0751*** 

  (0.00164) (0.00192) (0.00811) (0.00956) (0.00204) (0.00221) (0.0174) (0.0259)  

Hansen test (p-

value) 
0.625 0.897 0.542 0.310 0.323 0.361 0.563 0.286  

Contracting state-industy pairs: N=2381; growing state-industry pairs: N=945. Standard errors clustered by state and 3-digit NAICS in 

parenthesis. * p<0.10, ** p<0.05, *** p<0.01. Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. 

Controls not shown: growth rate of employees 2002-2012; log average establishment size (employees per establishment) in 2012; log 

of the count of facilities reporting to the NEI; NAICS 3-digit dummies, state dummies. IVs: log of violation (2000-2009) per 

employee (2009); log of full inspection (2000-2009) per employee (2009). Partial F of excluded IVs in 'contracting sectors': 76.69. 

Partial F of excluded IVs in 'growing sectors': 24.16. 

 

Table 13 - Impact of environmental regulation on skills: import penetration 

  Greenness Engineering & Technical Science Operation Management 

log(SO2/L) -0.00360*** -0.00279** -0.00543*** -0.00797*** -0.00655*** -0.00841*** -0.00931*** -0.00771*** 

 (0.00110) (0.00128) (0.00208) (0.00274) (0.00132) (0.00167) (0.00256) (0.00289)  

Imp. penetr 2009 0.0704*** 0.143** 0.0145 -0.207*** 0.0172 -0.142** 0.121*** 0.262*** 

 (0.0186) (0.0691) (0.0211) (0.0774) (0.0196) (0.0718) (0.0252) (0.0914)  

log(SO2/L) x  -0.0106  0.0326***  0.0234**  -0.0208*  

Imp. penetr 2009   (0.00934)   (0.0108)   (0.00936)   (0.0121)  

Hansen test (p-

value) 
0.476 0.681 0.927 0.798 0.346 0.796 0.512 0.710  

  Monitoring RTI NR tasks Log(Years of training) 

log(SO2/L) -0.00203** 0.000185 0.0271*** 0.0183** -0.00439*** -0.00244 -0.00432 -0.00640 

 (0.00102) (0.00118) (0.00632) (0.00713) (0.00160) (0.00184) (0.00719) (0.00824) 

Imp. penetr 2009 0.0632*** 0.256*** -0.402*** -1.182*** 0.0730*** 0.245*** -0.101 -0.245 

 (0.0142) (0.0777) (0.0734) (0.300) (0.0165) (0.0653) (0.0980) (0.366) 

log(SO2/L) x  -0.0284***  0.115***  -0.0253***  0.0219 

Imp penetr 2009   (0.00982)   (0.0384)   (0.00864)   (0.0481) 

Hansen test (p-

value) 
0.302 0.300 0.232 0.321 0.371 0.499 0.0644 0.187 

N=2603 industry-state pairs (only manufacturing sectors). Standard errors clustered by state and 3-digit NAICS in parenthesis. * p<0.10, 

** p<0.05, *** p<0.01. Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. Controls not shown: growth 

rate of employees 2002-2012; log average establishment size (employees per establishment) in 2012; log of the count of facilities 

reporting to the NEI; NAICS 3-digit dummies, state dummies. IVs: log of violation (2000-2009) per employee (2009); log of full 

inspection (2000-2009) per employee (2009), import penetration (2005). Additional IVs for specifications with the interaction between 

log(SO2/L) and import penetration: interactions between log of violation (2000-2009) per employee (2009) and log of full inspection 

(2000-2009) per employee (2009) with import penetration (2005). Partial F of excluded IVs in the specification without the interaction: 

68.38. Partial F of excluded IVs in in the specification with the interaction: 41.57. 
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Tables for Appendix A 

Table 14 – Selection of green skills 

Item Description Beta S.E. 

2B4g Systems Analysis 0.0589*** (0.0185) 

2B4h Systems Evaluation 0.0603*** (0.0182)  

2C3b Engineering and Technology 0.181*** (0.0518) 

2C3c Design 0.158*** (0.0451) 

2C3d Building and Construction 0.203*** (0.0503) 

2C3e Mechanical 0.135*** (0.0514) 

2C4b Physics 0.182*** (0.0546) 

2C4d Biology 0.0933*** (0.0301) 

2C4g Geography 0.140*** (0.0331) 

2C8b Law and Government 0.0948*** (0.0345)  

4A1b3 Estimating the Quantifiable Characteristics of Products, Events, or Information 0.0563*** (0.0196) 

4A2a3 Evaluating Information to Determine Compliance with Standards 0.0553*** (0.0185) 

4A2b3 Updating and Using Relevant Knowledge 0.0482*** (0.0180) 

4A3a4 Operating Vehicles, Mechanized Devices, or Equipment 0.0942*** (0.0310) 

4A3b2 Drafting, Laying Out, and Specifying Technical Devices, Parts, and Equipment 0.124*** (0.0373) 

4A4b6 Provide Consultation and Advice to Others 0.0666*** (0.0206)  

N=475 occupations (8-digit SOC). 3-digit SOC occupations with no green occupations are excluded. 3-digit SOC 

dummies included. OLS estimates. Standard errors clustered by 3-digit SOC in parenthesis. Beta and S.E. refer to the 

variable Greenness 

 

Table 15 – Principal component analysis 

Item Description Component 1 Component 2 Component 3 Component 4 Component 5 

2B4g Systems Analysis  0.4346    

2B4h Systems Evaluation  0.4245    

2C3b Engineering and Technology 0.4278     

2C3c Design 0.4536     

2C3d Building and Construction 0.3021    0.2204 

2C3e Mechanical 0.3326 -0.2976    

2C4b Physics 0.3191   0.4405  

2C4d Biology    0.8000  

2C4g Geography     0.8432 

2C8b Law and Government   0.4602  0.3856 

4A1b3 
Estimating the Quantifiable Characteristics 

of Products, Events, or Information 
0.2564     

4A2a3 
Evaluating Information to Determine 

Compliance with Standards 
  0.6999  -0.2124 

4A2b3 Updating and Using Relevant Knowledge  0.3241    

4A3a4 
Operating Vehicles, Mechanized Devices, or 

Equipment 
 -0.5026 0.3407   

4A3b2 
Drafting, Laying Out, and Specifying 

Technical Devices, Parts, and Equipment 
0.4298     

4A4b6 Provide Consultation and Advice to Others   0.3535 0.2250     

Principal component analysis. VARIMAX rotated components with loadings<0.2 not shown. Cumulative explained variance (5 

components): 79.72%. Eigenvalues for the first six unrotated components: 5.58, 3.93, 1.34, 0.99, 0.92, 0.65. 
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Table 16 – Selection of green skills (with employment weights) 

Item Description Beta S.E. 

2C3b Engineering and Technology 0.244*** (0.0496) 

2C3c Design 0.206*** (0.0638) 

2C3d Building and Construction 0.303*** (0.0903) 

2C3e Mechanical 0.221*** (0.0446) 

2C4b Physics 0.246*** (0.0367) 

2C4c Chemistry 0.140*** (0.0427) 

2C4d Biology 0.124*** (0.0275) 

2C4g Geography 0.153*** (0.0306)  

N=475 occupations (8-digit SOC). 3-digit SOC occupations with no green 

occupations are excluded. 3-digit SOC dummies included. OLS estimates 

weighted by employment share. Standard errors clustered by 3-digit SOC in 

parenthesis. Beta and S.E. refer to the variable Greenness 

 

Table 17 – Selection of green skills (count of specific tasks) 

Item Description 
Green specific tasks Total specific tasks 

Beta S.E. Beta S.E. 

2B4h Systems Evaluation 0.00230**  (0.000840)  0.00158**  (0.000716)  

2C3b Engineering and Technology 0.00836*** (0.00240) -0.000794 (0.00119) 

2C3c Design 0.00718*** (0.00202) -0.000306 (0.00150) 

2C3d Building and Construction 0.00931*** (0.00221) -0.00217 (0.00128) 

2C3e Mechanical 0.00637** (0.00233) -0.00191 (0.00124) 

2C4b Physics 0.00839*** (0.00244) -0.00134 (0.000823) 

2C4g Geography 0.00681*** (0.00146)  0.000354  (0.00107)  

2C8b Law and Government 0.00419*** (0.00150) 0.00102 (0.00129) 

4A1b3 
Estimating the Quantifiable Characteristics of 

Products, Events, or Information 
0.00266** (0.00103) -0.000312 (0.000760) 

4A2a3 
Evaluating Information to Determine Compliance with 

Standards 
0.00260*** (0.000854) 0.000859 (0.000728) 

4A3a4 
Operating Vehicles, Mechanized Devices, or 

Equipment 
0.00520*** (0.00149) -0.000908 (0.00124) 

4A3b2 
Drafting, Laying Out, and Specifying Technical 

Devices, Parts, and Equipment 
0.00570*** (0.00163) 0.0000792 (0.00117) 

4A4b6 Provide Consultation and Advice to Others 0.00291*** (0.000798)  0.000844  (0.00123)  

N=475 occupations (8-digit SOC). 3-digit SOC occupations with no green occupations are excluded. 3-digit SOC dummies 

included. OLS estimates weighted. Standard errors clustered by 3-digit SOC in parenthesis. Beta and S.E. refer to the 

variables Count of green specific tasks and Count of total specific tasks. 
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Tables for Appendix B 

Table 18 – Trends in total criteria pollutants emissions (2002=100) 

  SO2 CO NOx  Ozone PM2.5 

2002 1.00 1.00 1.00 1.00 1.00 

2005 0.99 1.04 0.87 0.88 0.98 

2008 0.75 0.97 0.75 0.75 0.82 

2011 0.46 0.91 0.56 0.59 0.66 

 

Tables for Appendix C 

Table 19 - Impact of environmental regulation on skills: alternative regulation measures (I) 

  Greenness 
Engineering 

& Technical 
Science 

Operation 

Management 
Monitoring 

Green spec 

tasks 

Log(ozone/L) -0.00273*** -0.00784*** -0.00988*** -0.0120*** -0.00417*** -0.189*** 

  (0.000845) (0.00161) (0.00127) (0.00227) (0.000996) (0.0383)  

Hansen test (p-value) 0.262 0.640 0.296 0.722 0.910 0.285  

  Greenness 
Engineering 

& Technical 
Science 

Operation 

Management 
Monitoring 

Green spec 

tasks 

Log(CO/L) -0.00299*** -0.00880*** -0.0110*** -0.0134*** -0.00465*** -0.209*** 

  (0.000948) (0.00181) (0.00146) (0.00265) (0.00114) (0.0442)  

Hansen test (p-value) 0.214 0.889 0.146 0.487 0.702 0.206  

  Greenness 
Engineering 

& Technical 
Science 

Operation 

Management 
Monitoring 

Green spec 

tasks 

Log(NOx/L) -0.00295*** -0.00874*** -0.0109*** -0.0133*** -0.00462*** -0.207*** 

  (0.000940) (0.00178) (0.00143) (0.00259) (0.00114) (0.0433)  

Hansen test (p-value) 0.198 0.948 0.115 0.438 0.659 0.177  

  Greenness 
Engineering 

& Technical 
Science 

Operation 

Management 
Monitoring 

Green spec 

tasks 

Log(PM2.5/L) -0.00314*** -0.00885*** -0.0112*** -0.0136*** -0.00472*** -0.216*** 

  (0.000947) (0.00177) (0.00137) (0.00243) (0.00107) (0.0435)  

Hansen test (p-value) 0.325 0.464 0.517 0.969 0.916 0.409  

  Greenness 
Engineering 

& Technical 
Science 

Operation 

Management 
Monitoring 

Green spec 

tasks 

Log(lead/L) -0.00378*** -0.0110*** -0.0137*** -0.0167*** -0.00581*** -0.263*** 

  (0.00121) (0.00237) (0.00190) (0.00357) (0.00147) (0.0582)  

Hansen test (p-value) 0.245 0.722 0.225 0.601 0.817 0.261  

  Greenness 
Engineering 

& Technical 
Science 

Operation 

Management 
Monitoring 

Green spec 

tasks 

Log(TRI/L) -0.00321*** -0.00978*** -0.0120*** -0.0147*** -0.00513*** -0.227*** 

  (0.00111) (0.00207) (0.00188) (0.00303) (0.00137) (0.0543)  

Hansen test (p-value) 0.141 0.755 0.0717 0.193 0.435 0.105  

N=3328 industry-state pairs. Standard errors clustered by state and 3-digit NAICS in parenthesis. * p<0.10, 

**p<0.05, *** p<0.01. Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. 

Controls not shown: growth rate of employees 2002-2012; log average establishment size (employees per 

establishment) in 2012; log of the count of facilities reporting to the NEI; NAICS 3-digit dummies, state 

dummies. IVs: log of violation (2000-2009) per employee (2009); log of full inspection (2000-2009) per 

employee (2009). Partial F for excluded IVs: ozone 234; CO 133.6; NOx 160; PM2.5 145.2; lead 81.15; TRI 

47.97. 
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Table 20 - Impact of environmental regulation on skills: alternative regulation measures (II) 

  
Non-green 

spec tasks 
RTI NR tasks R manual R cognitive 

Log(Years 

of training) 

Log(ozone/L) -0.0500 0.0239*** -0.00430*** 0.0172*** -0.00231*** -0.0450*** 

  (0.108) (0.00496) (0.00123) (0.00230) (0.000694) (0.0107)  

Hansen test (p-value) 0.886 0.878 0.557 0.775 0.938 0.945  

  
Non-green 

spec tasks 
RTI NR tasks R manual R cognitive 

Log(Years 

of training) 

Log(CO/L) -0.0551 0.0267*** -0.00476*** 0.0192*** -0.00259*** -0.0503*** 

  (0.121) (0.00584) (0.00141) (0.00284) (0.000762) (0.0120)  

Hansen test (p-value) 0.861 0.661 0.436 0.865 0.830 0.694  

  
Non-green 

spec tasks 
RTI NR tasks R manual R cognitive 

Log(Years 

of training) 

Log(NOx/L) -0.0546 0.0265*** -0.00472*** 0.0191*** -0.00257*** -0.0499*** 

  (0.120) (0.00572) (0.00139) (0.00277) (0.000766) (0.0121)  

Hansen test (p-value) 0.856 0.620 0.413 0.797 0.780 0.648  

  
Non-green 

spec tasks 
RTI NR tasks R manual R cognitive 

Log(Years 

of training) 

Log(PM2.5/L) -0.0572 0.0271*** -0.00489*** 0.0194*** -0.00262*** -0.0510*** 

  (0.123) (0.00549) (0.00134) (0.00254) (0.000758) (0.0111)  

Hansen test (p-value) 0.904 0.936 0.689 0.538 0.753 0.864  

  
Non-green 

spec tasks 
RTI NR tasks R manual R cognitive 

Log(Years 

of training) 

Log(lead/L) -0.0694 0.0334*** -0.00598*** 0.0240*** -0.00323*** -0.0628*** 

  (0.151) (0.00774) (0.00186) (0.00378) (0.000969) (0.0158)  

Hansen test (p-value) 0.876 0.776 0.494 0.930 0.966 0.844  

  
Non-green 

spec tasks 
RTI NR tasks R manual R cognitive 

Log(Years 

of training) 

Log(TRI/L) -0.0597 0.0294*** -0.00521*** 0.0213*** -0.00286*** -0.0555*** 

  (0.134) (0.00652) (0.00154) (0.00356) (0.000936) (0.0149)  

Hansen test (p-value) 0.831 0.343 0.221 0.454 0.589 0.412  

N=3328 industry-state pairs. Standard errors clustered by state and 3-digit NAICS in parenthesis. * p<0.10,  ** 

p<0.05, *** p<0.01. Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. Controls 

not shown: growth rate of employees 2002-2012; log average establishment size (employees per establishment) in 

2012; log of the count of facilities reporting to the NEI; NAICS 3-digit dummies, state dummies. IVs: log of 

violation (2000-2009) per employee (2009); log of full inspection (2000-2009) per employee (2009). Partial F for 

excluded IVs: ozone 234; CO 133.6; NOx 160; PM2.5 145.2; lead 81.15; TRI 47.97. 
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Table 21 – Impact of environmental regulation on skills – manufacturing industries only (with 3-

digit NAICS dummies) 

  Greenness 
Engineering & 

Technical 
Science 

Operation 

Management 
Monitoring 

Green specific 

tasks 

log(SO2/L) -0.00237** -0.00518*** -0.00625*** -0.00719*** -0.000924 -0.152*** 

  (0.00102) (0.00196) (0.00122) (0.00237) (0.000847) (0.0392)  

Hansen test (p-value) 0.560 0.912 0.353 0.571 0.350 0.979  

  
Non-green 

specific tasks 
RTI NR tasks R manual R cognitive 

Log(Years of 

training) 

log(SO2/L) 0.158 0.0201*** -0.00311** 0.0154*** -0.00155 -0.00616 

  (0.149) (0.00586) (0.00149) (0.00228) (0.000974) (0.00659) 

Hansen test (p-value) 0.972 0.269 0.411 0.346 0.0581 0.0595 

N=2603 industry-state pairs (only manufacturing sectors). Standard errors clustered by state and 3-digit NAICS in parenthesis. * 

p<0.10,  ** p<0.05, *** p<0.01. Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. Controls not 

shown: growth rate of employees 2002-2012; log average establishment size (employees per establishment) in 2012; log of the 

count of facilities reporting to the NEI; NAICS 3-digit dummies, state dummies. IVs: log of violation (2000-2009) per employee 

(2009); log of full inspection (2000-2009) per employee (2009). Partial F of excluded IVs: 99.39. 

 

Table 22 – Impact of environmental regulation on skills – manufacturing industries only (with 4-

digit NAICS dummies) 

  Greenness 
Engineering & 

Technical 
Science 

Operation 

Management 
Monitoring 

Green specific 

tasks 

log(SO2/L) -0.000910 -0.00506* -0.00420** -0.0113*** -0.00413*** -0.0870 

  (0.00144) (0.00259) (0.00165) (0.00239) (0.00160) (0.0696) 

Hansen test (p-value) 0.879 0.185 0.732 0.900 0.643 0.525 

  
Non-green 

specific tasks 
RTI NR tasks R manual R cognitive 

Log(Years of 

training) 

log(SO2/L) -0.0394 0.0424*** -0.00852*** 0.0200*** 0.00278*** -0.00361 

  (0.226) (0.00739) (0.00163) (0.00353) (0.000899) (0.0106) 

Hansen test (p-value) 0.742 0.740 0.746 0.871 0.573 0.0295 

N=2603 industry-state pairs (only manufacturing sectors). Standard errors clustered by state and 3-digit NAICS in parenthesis. * 

p<0.10,  ** p<0.05, *** p<0.01. Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. Controls not 

shown: growth rate of employees 2002-2012; log average establishment size (employees per establishment) in 2012; log of the 

count of facilities reporting to the NEI; NAICS 4-digit dummies, state dummies. IVs: log of violation (2000-2009) per employee 

(2009); log of full inspection (2000-2009) per employee (2009). Partial F of excluded IVs: 38.59. 
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Table 23 – Effect of control variables for baseline estimates 

  Greenness 
Engineering & 

Technical 
Science 

Operation 

Management 
Monitoring 

Green specific 

tasks 

log(SO2/L) -0.00303*** -0.00878*** -0.0110*** -0.0134*** -0.00466*** -0.211*** 

 (0.000974) (0.00193) (0.00155) (0.00271) (0.00118) (0.0461)  

log(count NEI facilities) 0.00258** 0.00455** 0.00617*** 0.00400* 0.00260** 0.154*** 

 (0.00108) (0.00195) (0.00170) (0.00241) (0.00118) (0.0484)  

Growth log(Empl) 2002-2011 -0.00136 -0.00146 -0.00188 -0.00194 -0.0000210 -0.0596  

 (0.000840) (0.00145) (0.00126) (0.00157) (0.000742) (0.0368)  

log(empl/N establ, 2011) 0.0103*** 0.0111*** 0.0126*** 0.0130*** 0.00859*** 0.466*** 

 (0.00133) (0.00198) (0.00203) (0.00272) (0.00122) (0.0500)  

Hansen test (p-value) 0.241 0.699 0.250 0.648 0.849 0.251  

  
Non-green 

specific tasks 
RTI NR tasks R manual R cognitive 

Log(Years of 

training) 

log(SO2/L) -0.0557 0.0268*** -0.00479*** 0.0192*** -0.00259*** -0.0504*** 

 (0.121) (0.00578) (0.00143) (0.00278) (0.000814) (0.0126)  

log(count NEI facilities) 0.261** -0.0148*** 0.00158 -0.0123*** -0.00114 0.0382*** 

 (0.132) (0.00524) (0.00133) (0.00267) (0.000724) (0.00997)  

Growth log(Empl) 2002-2011 0.0166 0.00562 -0.000721 0.00574*** -0.000609 -0.0152*  

 (0.110) (0.00430) (0.00105) (0.00217) (0.000555) (0.00921)  

log(empl/N establ, 2011) -0.219 -0.0158** 0.00701*** -0.00675* 0.00214** 0.0545*** 

  (0.163) (0.00764) (0.00184) (0.00355) (0.00100) (0.0126)  

Hansen test (p-value) 0.878 0.815 0.526 0.889 0.996 0.875  

N=3328 industry-state pairs. Standard errors clustered by state and 3-digit NAICS in parenthesis. * p<0.10,  ** p<0.05, *** p<0.01. 

Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. Controls not shown: NAICS 3-digit dummies, 

state dummies. IVs: log of violation (2000-2009) per employee (2009); log of full inspection (2000-2009) per employee (2009). 

Partial F of excluded IVs: 112. 

 

Table 24 – First stages for baseline estimates 

IV: log(SO2/L) log(ozone/L) log(CO/L) log(NOx/L) log(PM2.5/L) log(lead) log(TRI/L) 

log(violations/L) 0.420*** 0.438*** 0.492*** 0.516*** 0.314*** 0.347*** 0.559*** 

 (0.112) (0.118) (0.131) (0.128) (0.121) (0.0945) (0.159)  

log(full_inspections/L) 0.354*** 0.428*** 0.278** 0.258** 0.451*** 0.273*** 0.124  

  (0.108) (0.111) (0.118) (0.119) (0.108) (0.0927) (0.159)  

N 3328 3328 3328 3328 3328 3328 3328  

Standard errors clustered by state and 3-digit NAICS in parenthesis. * p<0.10,  ** p<0.05, *** p<0.01. Regressions weighted by 

employment in 2012 at the state and NAICS 4-digit level. 

 

Table 25 – First stages alternative specifications 

  4-digit NAICS Contracting Expanding 
3-digit NAICS 

(only manuf) 

4-digit NAICS 

(only manuf) 

IV: log(SO2/L) log(SO2/L) log(SO2/L) log(SO2/L) log(SO2/L) 

log(violations/L) 0.370*** 0.391*** 0.393* 0.671*** 0.448*** 

 (0.101)  (0.115) (0.238) (0.185) (0.153)  

log(full_inspections/L) 0.142  0.307*** 0.235 0.237 0.184  

  (0.0993)  (0.107) (0.240) (0.171) (0.156)  

N 3328  2381 945 2603 2603  

Standard errors clustered by state and 3-digit NAICS in parenthesis. * p<0.10,  ** p<0.05, *** p<0.01. 

Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. 
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Table 26 – First stages for specifications that include import 

  

Specification without the 

interaction between import 

penetration and regulation 

Specification with the interaction between import 

penetration and regulation 

IV: log(SO2/L) Imp pen 2009 log(SO2/L) Imp pen 2009 
log(SO2/L) x 

Imp pen 2009 

Imp pen 2005 3.687*** 0.992*** 12.43*** 0.664*** 13.64*** 

 (1.045) (0.0136) (3.472) (0.0595) (0.924)  

log(violations/L) 0.636*** -0.00191 0.519** 0.00168 -0.0406  

 (0.182) (0.00200) (0.204) (0.00203) (0.0382)  

log(full_inspections/L) 0.216 0.00265 0.224 0.00311 0.0289  

 (0.168) (0.00199) (0.197) (0.00214) (0.0374)  

log(violations/L) x   0.207 -0.0182 -0.170  

Imp pen 2005   (1.638) (0.0233) (0.499)  

log(full_inspections/L) x   1.386 -0.0415 1.381*** 

Imp pen 2005     (1.736) (0.0270) (0.512)  

N 2603 2603 2603 2603 2603  

Standard errors clustered by state and 3-digit NAICS in parenthesis. * p<0.10,  ** p<0.05, *** p<0.01. 

Regressions weighted by employment in 2012 at the state and NAICS 4-digit level. 
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Tables for Appendix D 

Table 27 - Impact of environmental regulation on single green skills items 

  3-digit NAICS dummies 4-digit NAICS dummies 

Item Description log(SO2/L) 
Hansen test 

(p-value) 
log(SO2/L) 

Hansen test 

(p-value) 

2B4g Systems Analysis 
-0.0170*** 

(0.00330) 
0.815 

-0.0101*** 

(0.00232) 
0.314 

2B4h Systems Evaluation 
-0.0162*** 

(0.00302) 
0.743 

-0.00829*** 

(0.00208) 
0.443 

2C3b Engineering and Technology 
-0.0174*** 

(0.00350) 
0.616 

-0.00829** 

(0.00350) 
0.814 

2C3c Design 
-0.0179*** 

(0.00299) 
0.540 

-0.00669** 

(0.00337) 
0.948 

2C3d Building and Construction 
0.00148 

(0.00161) 
0.608 

0.000193 

(0.00236) 
0.692 

2C3e Mechanical 
-0.0141*** 

(0.00397) 
0.805 

0.00649** 

(0.00270) 
0.111 

2C4b Physics 
-0.0181*** 

(0.00337) 
0.877 

-0.00320 

(0.00225) 
0.307 

2C4d Biology 
-0.00396*** 

(0.00126) 
0.013 

-0.00289** 

(0.00117) 
0.210 

2C4g Geography 
-0.000722 

(0.00129) 
0.0268 

-0.00704*** 

(0.00135) 
0.739 

2C8b Law and Government 
-0.00919*** 

(0.00134) 
0.565 

-0.00810*** 

(0.00210) 
0.522 

4A1b3 
Estimating the Quantifiable Characteristics of 

Products, Events, or Information 

0.000718 

(0.000801) 
0.990 

0.000139 

(0.00112) 
0.482 

4A2a3 
Evaluating Information to Determine Compliance with 

Standards 

-0.000129 

(0.00211) 
0.635 

0.00295* 

(0.00166) 
0.865 

4A2b3 Updating and Using Relevant Knowledge 
-0.0121*** 

(0.00263) 
0.567 

-0.00830*** 

(0.00153) 
0.571 

4A3a4 
Operating Vehicles, Mechanized Devices, or 

Equipment 

0.0201*** 

(0.00221) 
0.900 

0.0110*** 

(0.00279) 
0.0962 

4A3b2 
Drafting, Laying Out, and Specifying Technical 

Devices, Parts, and Equipment 

-0.00547*** 

(0.00182) 
0.315 

-0.00208 

(0.00223) 
0.618 

4A4b6 Provide Consultation and Advice to Others 
-0.00833*** 

(0.00211) 
0.491 

-0.00756*** 

(0.00199) 
0.618 

N=3328 industry-state pairs. Standard errors clustered by state and 3-digit NAICS in parenthesis. * p<0.10,  ** p<0.05, *** 

p<0.01. Regressions weighted by employment in 2012 at the state and NAICS 3-digit level (left panel) or NAICS 4-digit level 

(right panel). Controls not shown: growth rate of employees 2002-2012; log average establishment size (employees per 

establishment) in 2012; log of the count of facilities reporting to the NEI; NAICS 3-digit dummies, state dummies. IVs: log of 

violation (2000-2009) per employee (2009); log of full inspection (2000-2009) per employee (2009). Partial F for excluded IVs 

(3-digit NAICS dummies): 112. Partial F for excluded IVs (4-digit NAICS dummies): 42.35. 

 


